Temperature Dependency of Ytterbium-Doped Fiber Laser (YDFL) Based on Fabry-Perot Design Operating at 915 nm and 970 nm High Power Pumping Configuration
Abstract
Full Text:
PDF (العربية)References
H. W. Etzel, H. W. Candy. and R. J. Ginther, “Stimulated emission of infrared radiation from ytterbium-activated silicate glass,” Appl. Opt., vol. 1, pp. 534, 1962.
R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, Ytterbium-Doped Fiber Amplifiers, IEEE journal of quantum electronics, vol. 33, no. 7, pp. 1049-1056, JULY 1997.
J. Chen, Z. Sui, F. Chen and J. Wang, Output characteristics of Yb3+-doped fiber laser at different temperatures, Chin. Opt. Lett., vol. 4, no. 3, pp. 173-174, (2006).
M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers model for rare-earth-doped fiber amplifiers and lasers, CRC Press; 2nd edition (2001).
J. Yi, Y. Fan, S. Huang, Study of Short-Wavelength Yb: Fiber Laser, Photonics Journal, vol. 4, no. 6, pp. 2278 - 2284, (2012).
B. Zhang, R. Zhang, Y. Xue, Y. Ding, and W. Gong, Temperature Dependence of Ytterbium-Doped Tandem-Pumped Fiber Amplifiers, Photonics Technology Letters, vol. 28, no. 2, pp. 159-162, (2016).
H. M. Pask, R.J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechinc, P. R. Barber, and J. M. Dawes, IEEE Sel. Top. Quantum Electron. 1, 2 (1995).
L.Yan, W. Chunyu, L. Yutian, A four-passed ytterbium-doped fiber amplifier, Optics & Laser Technology, pp. 1111-1114 39 (2007).
J. Y. Allain, J. F. Bayon, M. Monerie, P. Bernage, and P. Niay, Ytterbium-doped silica fiber laser with intracore Bragg gratings operating at 1.02 µm, Electron. Lett., vol. 29, no. 3, pp. 309-310, (1993).
Y. Jeong, J. K. Sahu, D.N. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1 kW of continuous-wave output power electronics letter vol. 40, no. 8, pp. 470-472, (2004).
Y. Wang, Thermal effects in kilowatt fiber lasers, IEEE Photonics Tech. Lett. 16, pp. 63-65, (2004).
J. X. Chen, Z. Sui, F.S. Chen, Opto-Electron. Eng. 32, pp. 77–79, (2005).
Q. J. Jiang, P. Yan, J.G. Zhang, M.L. Gong, Analysis on thermal characteristic of Ytterbium-doped fiber laser, Chin. J. Laser 35, pp. 827–829, (2008).
N. A. Brilliant, and K. Lagonik, Thermal effects in a dual-clad ytterbium fiber laser, Opt. Lett. 26, pp. 1669–1671, (2001).
D. A. Grukh, A. S. Kurkov, V. M. Paramonov, E. M. Dianov, Effect of heating on the optical properties of Yb3+-doped fibers and fiber lasers, Quant. Elect. 34, pp. 579–582, (2004).
L. J. Henry, T. M. Shay, D. W. Hult and K. B. Rowland Jr., Thermal effects in narrow linewidth single and two tone fiber lasers, Vol. 19, no. 7, Optics express 6165, (2011)
B. K. Zhou, Principle of Laser, sixth ed., National Defense Industry Press, China, 2008.
X. Peng, L. Dong, Temperature dependence of ytterbium-doped fiber amplifiers, J. Opt. Soc. Am. B 25, pp. 126–130, (2008).
A. H. M. Husein, A. H. El-Astal, F.I. El-Nahal, The gain and noise figure of Yb Er-codoped fiber amplifiers based on the temperature-dependent model, Opt.Mater. 33, pp. 543–548, (2011).
A. H. M. Husein, F. I. El-Nahal, Model of temperature dependence shape of ytterbium -doped fiber amplifier operating at 915 nm pumping configuration, (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 2, no. 10, pp. 10-13, (2011).
T.Y. Fan, Optimizing the efficiency and stored energy in quasi three-level lasers, IEEE J. Quant. Elect. 28, pp. 2692–2697, (1992).
B. Majaron, H. Lukac, M. Copic, Population dynamics in Yb:Er: phosphate glass under neodymium laser pumping, IEEE J. Quant. Elect. 31, pp. 301–308, (1995).
J. T. Foumier and R. H. Bartram, “Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass,” J. Phys. Chem. Solids, vol. 31, pp. 2615-2624, (1970).
D. C. Brown, H. J. Hoffman, Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers, IEEE J. Quant. Electron. 37, pp. 207–217, (2001).