Received on (29-10-2020) Accepted on (01-06-2021)

A CONSTRUCTION OF A SEMITOPOLOGICAL SEMIGROUP OF SOFT ULTRAFILTERS

Ahmed EL-MABHOUH,¹ WESAM MOUSA,²

¹Department of Mathematics, Faculty of Sciences, Islamic University of Gaza, Gaza Strip, Palestine.

* Corresponding author

e-mail address: mabhouh@iugaza.edu.ps

https://doi.org/10.33976/IUGNS.29.2/2021/4

Abstract:

Abstract. In this paper, we construct a semitopological semigroup consisting entirely of soft ultrafilters.

Keywords:

soft sets; soft topological space; soft ultrafilters; compact semitopological

1. Introduction

Soft sets was introduced by the Russian Demetry Molodtsove 1999 [Molodtsov, 1999] as a general mathematical tool for dealing with uncertain objects. Operations on soft sets was introduced by P.K. Maji, R. Biswas and A. R. Roy 2003 [Maji and Roy, 2003]. Shabir and Nas 2011 [Shabir and Naz, 2011] introduced and studied the concept of

soft topological spaces over soft sets and some related concepts. In [Aygunoglu and Aygun, 2011] Aygunoglu , Aygun introduced the soft product topology, E. Peygh and B. Samadi , A.Tayebi 2013 [Peyghan and Tayebi, 2012] introduced soft locally connected of a soft point and soft connected spaces depending on soft disjoint non-null soft open sets. Let (X, τ, A) be a soft topological space, let

$$\beta(X, \tau, A) = \{ u : u \text{ is a soft ultrafilter on } X \}.$$

A EL-Mabhouh and W. Mousa 2018 [EL-Mabhouh and Mousa, 2018] have shown that $\beta(X,\tau,A)$ is a weakly soft compactification of (X,τ,A) which is Hausdorff. In this paper, We show that if (X,*) in addition is a semigroup, then $\beta(X,\tau,A)$ can be given the structure of a semitopological semigroup where the operation is an extension of (*).

2000 Mathematics Subject Classification. 47A16, 37B99.

 $\it Key\ words\ and\ phrases.$ soft sets, soft topological space, soft ultrafilters, semitopological semi-group .

2. Preliminaries

Definition 2.1. [Georgiou and Megaritis, 2014] Let X be an initial universe set and A a set of parameters. A pair (F,A), where F is a map from A to $\mathcal{P}(X)$, is called a soft set over X. In what follows by SS(X,A), we denote the family of all soft sets (F,A) over X.

Definition 2.2. [Georgiou and Megaritis, 2014] The soft set (F, A), where $F(a) = \emptyset$, for every $a \in A$ is called the A- null soft set of SS(X, A) and denoted by 0_A . The soft set (F, A), where F(a) = X, for every $a \in A$ is called the A-absolute soft set of SS(X, A) and denoted by 1_A .

Definition 2.3. [Georgiou and Megaritis, 2014] Let $(F, A), (G, A) \in SS(X, A)$. We say that (F, A) is a soft subset of (G, A) if $F(a) \subseteq G(a)$ for every $a \in A$. Symbolically, we write $(F, A) \sqsubseteq (G, A)$. Also we say that the pairs (F, A), (G, A) are soft equal if $(F, A) \sqsubseteq (G, A)$ and $(G, A) \sqsubseteq (F, A)$. Symbolically, we write (F, A) = (G, A).

Definition 2.4. [Georgiou and Megaritis, 2014] Let I be an arbitrary index set and $\{(F_i, A) : i \in I\} \subseteq SS(X, A)$.

- (1) The soft union of these sets is the soft set $(F, A) \in SS(X, A)$, where $F: A \to \mathcal{P}(X)$ defined by $F(a) = \cup \{(F_i(a)) : i \in I\}$, for all $a \in A$ and we write $(F, A) = \cup \{(F_i, A) : i \in I\}$.
- (2) The soft intersection of these sets is the soft set $(F,A) \in SS(X,A)$, where $F:A \to \mathcal{P}(X)$ defined by $F(a) = \bigcap \{(F_i(a)) : i \in I\}$, for every $a \in A$ and we write $(F,A) = \bigcap \{(F_i,A) : i \in I\}$.

Proposition 2.1. [Georgiou and Megaritis, 2014] $If(G, A), (H, A), (F_1, A), (F_2, A) \in SS(X, A)$ such that

$$(F_1, A) \sqsubseteq (G, A)$$
 and $(F_2, A) \sqsubseteq (H, A)$, then $(F_1, A) \sqcap (F_2, A) \sqsubseteq (G, A) \sqcap (H, A)$.

Definition 2.5. [Pei and Miao, 2005] Let $x \in X$. The soft set (F, A) over X, where $F(a) = \{x\}$ for all $a \in A$, is called the singleton soft point and denoted by x_A or (x, A).

Definition 2.6. [Georgiou and Megaritis, 2014] Let $(F, A) \in SS(X, A)$. The soft complement of (F, A) is the soft set $(H, A) \in SS(X, A)$, where $H : A \to \mathcal{P}(X)$ defined by, $H(a) = X \setminus F(a)$, for every $a \in A$ and we write $(H, A) = (F, A)^c$.

Definition 2.7. [P. Wang and He, 2015] Let X be a nonempty set. A soft filter on X is a non empty subset $\mathcal{U} \subseteq SS(X,A)$ such that :

- (1) If $(G, A), (H, A) \in \mathcal{U}$, then $(G, A) \sqcap (H, A) \in \mathcal{U}$.
- (2) If $(G, A) \in \mathcal{U}$ and $(G, A) \sqsubseteq (H, A) \in SS(X, A)$, then $(H, A) \in \mathcal{U}$.
- (3) $0_A \notin \mathcal{U}$.

A soft ultrafilter on X is a soft filter which is not properly contained in any other soft filter on X.

Proposition 2.2. [EL-Mabhouh and Mousa, 2018] Let $x \in X$, and $a \in A$ be fixed. Let

$$e_a(x) = \{(G, A) : x \in G(a)\}$$

Then $e_a(x)$ is a soft ultrafilter on X which is called the soft Principal ultrafilter on X generated by x and a.

Proposition 2.3. [EL-Mabhouh and Mousa, 2018] Let $x \in X$, and $a \in A$ be fixed, then $e_a(x)$ is the only soft principal ultrafilter containing (x, A).

Proposition 2.4. [EL-Mabhouh and Mousa, 2018] Let $x \in X$, $a \in A$ be fixed, and $(G, A) \in SS(X, A)$ where $\forall b \in A$,

$$G(b) = \begin{cases} \{x\} & , b = a, \\ \emptyset & , otherwise. \end{cases}$$

Then the only soft ultrafilter containing (G, A) is $e_a(x)$.

Definition 2.8. [Georgiou and Megaritis, 2014] Let X be an initial universe set and A be a set of parameters, and $\tau \subseteq SS(X,A)$. We say that the family τ defines a soft topology on X if the following axioms are true:

- (1) $0_A, 1_A \in \tau$.
- (2) If $(G, A), (H, A) \in \tau$, then $(G, A) \cap (H, A) \in \tau$.
- (3) If $(G_i, A) \in \tau$ for every $i \in I$, then $\sqcup \{(G_i, A) : i \in I\} \in \tau$.

The triple (X, τ, A) is called a soft topological space or soft space. The members of τ are called soft open sets on X. Also, a soft set (F, A) is called soft closed if the complement $(F, A)^c \in \tau$.

Theorem 2.1. [EL-Mabhouh and Mousa, 2018] Let (X, τ, A) be a soft topological space and let $\mathcal{U} \subseteq SS(X, A)$. Then the following statements are equivalent:

- (1) \mathcal{U} is a soft ultrafilter on (X, τ, A)
- (2) \mathcal{U} has the finite intersection property and for each $(G, A) \in SS(X, A) \setminus \mathcal{U}$ there is some $(H, A) \in \mathcal{U}$ such that $(G, A) \cap (H, A) = 0_A$
- (3) \mathcal{U} is maximal with respect to finite intersection property, that is; \mathcal{U} is maximal member of $\{\mathcal{V} \subseteq SS(X,A) : \mathcal{V} \text{ has the finite intersection property } \}$
- (4) \mathcal{U} is a soft filter on (X, τ, A) and for all $\mathcal{F} \in \mathcal{P}_f(SS(X, A))$, if $\sqcup \mathcal{F} \in \mathcal{U}$ then $\mathcal{F} \cap \mathcal{U} \neq \phi$

(where $\mathcal{P}_f(S)$ is the collection of all finite subsets of S.)

(5) \mathcal{U} is a soft filter on (X, τ, A) and for all $(G, A) \in SS(X, A)$ either $(G, A) \in \mathcal{U}$ or $(G, A)^c \in \mathcal{U}$

Remark 2.9. Two soft ultrafilters \mathcal{U} and \mathcal{V} on X are equal if and only if $\mathcal{U} \subseteq \mathcal{V}$ or $\mathcal{V} \subseteq \mathcal{U}$.

Definition 2.10. [EL-Mabhouh and Mousa, 2018] Let (X, τ, A) be a soft topological space, then

- (1) $\mathcal{B}(X, \tau, A) = \{\mathcal{U} : \mathcal{U} \text{ is a soft ultrafilter on } X\}.$
- (2) Given $(G, A) \in SS(X, A)$, $\widehat{(G, A)} = \{ \mathcal{U} \in \mathcal{B}(X, \tau, A) : (G, A) \in \mathcal{U} \}$.

Theorem 2.2. [EL-Mabhouh and Mousa, 2018] Let (X, τ, A) be a soft topological space. Then

- (a) $\mathcal{B}(X,\tau,A)$ is a Hausdorff space.
- (b) The sets of the form (G, A) are the clopen subsets of $\mathcal{B}(X, \tau, A)$.

Theorem 2.3. [EL-Mabhouh and Mousa, 2018] Let (X, τ, A) be a soft topological space, and $a \in A$ be fixed. Define $e_a : X \to \mathcal{B}(X, \tau, A)$ such that for each $x \in X$, $e_a(x)$ is the soft principal ultrafilter defined in Proposition (2.2). Then

(a) Let $(G, A) \in SS(X, A)$ where $\forall b \in A$,

$$G(b) \neq \emptyset$$
 if $b = a$ and $G(b) = \emptyset$ otherwise.

Then
$$\overline{e_a(G(a))} = \widehat{(G,A)}$$
.

(b) If $x \in X$, and $(F, A) \in SS(X, A)$ where $\forall b \in A$,

$$F(b) = \begin{cases} \{x\} &, b = a, \\ \emptyset &, otherwise. \end{cases}$$

Then
$$\widehat{(F,A)} = \{e_a(x)\}.$$

(c) The mapping e_a is injective and

$$e[X] = \bigcup \{e_a(X) : a \in A\} = \{e_a(x) : a \in A \text{ and } x \in X\}$$

is a dense subset of $\mathcal{B}(X, \tau, A)$ whose points are precisely the isolated points of $\mathcal{B}(X, \tau, A)$.

(d) If (X, τ, A) is soft discrete topology, then e_a is softly embedding.

Definition 2.11. [Clifford and Preston, 1961] A semigroup is a pair (S, *) where S is a nonempty set and * is a binary associative operation on S.

Definition 2.12. [Clifford and Preston, 1961] A group is a pair (S, *) such that

- (1) (S,*) is a semigroup and
- (2) there is an element $e \in S$, called the identity, such that ex = xe = x for all $x \in S$.
- (3) for each $x \in S$ there exists $y \in S$ such that xy = yx = e. y is called the inverse of x.

Definition 2.13. [Clifford and Preston, 1961] Let S be a semigroup. Then

- (a) S is commutative if and only if xy = yx for all $x, y \in S$.
- (b) The center of S is $\{x \in S : \text{ for all } y \in S, xy = yx\}.$
- (c) Given $x \in S$, $\lambda_x : S \to S$ is defined by $\lambda_x(y) = xy$.
- (d) Given $x \in S$, $\rho_x : S \to S$ is defined by $\rho_x(y) = yx$.
- (e) $L(S) = \{\lambda_x : x \in S\}.$
- (f) $\mathcal{R}(S) = \{ \rho_x : x \in S \}.$

Definition 2.14. [Clifford and Preston, 1961] Let S be a semigroup.

(a) An element $x \in S$ is an idempotent if and only if xx = x.

- (b) $E(S) = \{x \in S : x \text{ is an idempotent}\}.$
- (c) T is a subsemigroup of S if and only if $T \subseteq S$, and T is a semigroup under the restriction of the operation of S.
- (d) T is a subgroup of S if and only if $T \subseteq S$, and T is a group under the restriction of the operation of S.
- (e) Let $t \in E(S)$. Then $H(t) = \bigcup \{G : G \text{ is a subgroup of } S \text{ and } t \in G\}$. Note that if G be a group with identity e, then $E(G) = \{e\}$.

Definition 2.15. [Clifford and Preston, 1961] Let (S, .) be a semigroup with a topology τ defined on S. Then

- (a) S is a right topological semigroup if $\rho_x: S \to S$ is continuous for all $x \in S$.
- (b) S is a left topological semigroup $\lambda_x: S \to S$ is continuous for all $x \in S$.
- (c) S is a semitopological semigroup if it is a right topological semigroup which is also a left topological semigroup.

3. Extending the operation to $\mathcal{B}(X,\tau,A)$

All semigroups in this section are assumed to have an identity. If (X, \cdot) is a semi-group without identity, we adjoint one element say $1 \notin X$. Then $(X \cup \{1\}, *)$ is a semigroup with identity 1 where

- (1) 1 * 1 = 1.
- (2) 1 * x = x * 1 = x for all $x \in X$.
- (3) $x * y = x \cdot y$ for all $x, y \in X$.

Definition 3.1. Let (X, *) be a semigroup. Let $M, N \subseteq X$. We define $M * N = \{m * n : m \in M, n \in N\}$. If $M = \emptyset$ or $N = \emptyset$, then $M * N = \emptyset$

Definition 3.2. Let (X,*) be a semigroup. We define * on SS(X,A) by: for any $(F,A), (G,A) \in SS(X,A), (F,A) * (G,A) = (H,A)$ where $H(a) = F(a) * G(a) \forall a \in A$

Proposition 3.1. Let (X, *) be a semigroup then (SS(X, A), *) is a semigroup with identity (1, A).

Proof. The operation * is binary. Also it is associative, since

$$[(F, A) * (G, A)] * (C, A) = (H, A) * (C, A) = (D, A) \text{ where } \forall a \in A$$

$$D(a) = H(a) * C(a) = [F(a) * G(a)] * C(a) = F(a) * [G(a) * C(a)].$$

This implies that (D, A) = (F, A) *[(G, A)] *(C, A)]. Also for each $(F, A) \in SS(X, A)$, we have (F, A) *(1, A) = (F, A) and (1, A) *(F, A) = (F, A). Hence (1, A) is the identity of (SS(X, A), *).

Proposition 3.2. Let (X, *) be a semigroup, let $M = \{(x, A) : x \in X\}$, then M is a subsemigroup of (SS(X, A), *). When (X, *) is a group, then M is a subgroup of (SS(X, A), *).

Proof. Let $(x, A), (y, A) \in M$. Then (x, A) * (y, A) = (G, A) where $G(a) = \{x\} * \{y\} = \{x * y\}$ for all $a \in A$.

This implies that $(G, A) = (x * y, A) \in M$. When (X, *) is a group, then For each $(x, A) \in M$, there exists $(x^{-1}, A) \in M$ such that

$$(x,A) * (x^{-1},A) = (x^{-1},A) * (x,A) = (1,A).$$

Lemma 3.1. Let (X, *) be a semigroup, let $(G, A), (H, A), (F, A) \in SS(X, A)$. The following statements are true:

- $(1) \ [(G,A)\sqcap (H,A)] \not \ast (F,A) \sqsubseteq [(G,A) \not \ast (F,A)] \sqcap [(H,A) \not \ast (F,A)].$
- $(2) \ (F,A) \star [(G,A) \sqcap (H,A)] \sqsubseteq [(F,A) \star (G,A)] \sqcap [(F,A) \star (H,A)].$
- (3) $[(G, A) \sqcup (H, A)] * (F, A) = [(G, A) * (F, A)] \sqcup [(H, A) * (F, A)].$
- $(4) \ (F,A) \star [(G,A) \sqcup (H,A)] = [(F,A) \star (G,A)] \sqcup [(F,A) \star (H,A)].$
- (5) If $(G, A) \sqsubseteq (H, A)$, then $(G, A) * (F, A) \sqsubseteq (H, A) * (F, A)$.

Proof. (1) Let $a \in A$, then $[G(a) \cap H(a)] * F(a) \subseteq [G(a) * F(a)] \cap [H(a) * F(a)]$. Hence $[(G,A) \cap (H,A)] * (F,A) \sqsubset [(G,A) * (F,A)] \cap [(H,A) * (F,A)].$

- (2) Similar to (1).
- (3) Let $a \in A$, $[G(a) \cup H(a)] * F(a) = [G(a) * F(a)] \cup [H(a) * F(a)]$. Hence $[(G, A) \sqcup (H, A)] * (F, A) = [(G, A) * (F, A)] \sqcup [(H, A) * (F, A)]$.
- (4) Similar to (3).
- (5) Let $a \in A$, then $[G(a) * F(a)] \subseteq H(a) * F(a)$. Hence, $(G, A) * (F, A) \subseteq (H, A) * (F, A)$.

Note that the equality in parts 1,2 of Lemma (3.1) do not hold as shown in the following example.

Consider the semigroup $(\mathbb{N} \cup \{0\}, +)$ and the soft sets $(G, A), (H, A), (F, A) \in SS(\mathbb{N} \cup \{0\}, A)$, where $A = \{a, b\}$, and

$$G(a) = \{0, 1, 2, 3, 4\}, H(a) = \{3, 4, 5\}, F(a) = \{0, 1, 5\}.$$

Now $[G(a) \cap H(a)] + F(a) = \{3, 4\} + \{0, 1, 5\} = \{3, 4, 5, 8, 9\}$ but

$$[G(a) + F(a)] \cap [H(a) + F(a)] = [\{0, 1, 2, 3, 4\} + \{0, 1, 5\}] \cap [\{3, 4, 5\} + \{0, 1, 5\}]$$

 $= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cap \{3, 4, 5, 6, 8, 9, 10\} = \{3, 4, 5, 6, 8, 9\}.$

Hence $[G(a) \cap H(a)] + F(a) \neq [G(a) + F(a)] \cap [H(a) + F(a)]$. Consequently $[(G, A) \cap (H, A)] + (F, A) \neq [(G, A) + (F, A)] \cap [(H, A) + (F, A)]$.

Definition 3.3. Let (X,*) be a semigroup, let $(G,A),(F,A) \in SS(X,A)$. Define

$$(G, A)(F, A)^{-1} = \{(M, A) : (M, A) * (F, A) \sqsubseteq (G, A)\} \cup \{(G, A)\}.$$

Definition 3.4. Let (X, τ, A) be a soft topological space. Given two soft ultrafilters \mathcal{U}, \mathcal{V} on (X, τ, A) , define $\mathcal{U} \otimes \mathcal{V}$ to be the collection of all soft sets (G, A) such that

 $(G,A)(F,A)^{-1}\cap\mathcal{U}\neq\emptyset$ for some $(F,A)\in\mathcal{V}$. That is

$$\mathcal{U} \otimes \mathcal{V} = \{ (G, A) : (G, A)(F, A)^{-1} \cap \mathcal{U} \neq \emptyset \text{ for some } (F, A) \in \mathcal{V} \}$$

By Theorem (2.3), X can be considered as a subset of $\mathcal{B}(X, \tau, A)$ where each $x \in X$ can be identified with $e_a(x)$.

Theorem 3.1. Let (X, *) be a semigroup, let $a \in A$ be fixed, and $\mathcal{U}, \mathcal{V} \in \mathcal{B}(X, \tau, A)$ then

- (a) $\mathcal{U} \otimes \mathcal{V} \in \mathcal{B}(X, \tau, A)$.
- (b) The operation \otimes is associative.
- (c) \otimes extends the operation * on X; that is, for any two soft principal ultrafilters $e_a(x), e_a(y), we have <math>e_a(x) \otimes e_a(y) = e_a(x * y).$

Proof. (a) We show $\mathcal{U} \otimes \mathcal{V}$ satisfies all properties of soft ultrafilters.

- (1) For all $(F, A) \in \mathcal{V}$, we have $0_A(F, A)^{-1} = \{(M, A) : (M, A) * (F, A) \sqsubseteq 0_A\} = \{0_A\}$. Hence $0_A(F, A)^{-1} \cap \mathcal{U} = \emptyset$. So $0_A \notin \mathcal{U} \otimes \mathcal{V}$. Also $1_A \in 1_A 1_A^{-1}$ and $1_A \in \mathcal{V}$. So $1_A 1_A^{-1} \cap \mathcal{U} \neq \emptyset$. Hence $1_A \in \mathcal{U} \otimes \mathcal{V}$.
- (2) If $(G_1, A), (G_2, A) \in \mathcal{U} \otimes \mathcal{V}$, then $(G_1, A)(S_1, A)^{-1} \cap \mathcal{U} \neq \emptyset$ and $(G_2, A)(S_2, A)^{-1} \cap \mathcal{U} \neq \emptyset$ for some $(S_1, A), (S_2, A) \in \mathcal{V}$. Let $(M_1, A), (M_2, A) \in \mathcal{U}$ such that $(M_1, A) \cdot (S_1, A) \sqsubseteq (G_1, A)$ and $(M_2, A) \cdot (S_2, A) \sqsubseteq (G_2, A)$, so by parts 1,5 of Lemma (3.1) we get

$$[(M_{1}, A) \sqcap (M_{2}, A)] \star [(S_{1}, A) \sqcap (S_{2}, A)] \sqsubseteq (M_{1}, A) \star [(S_{1}, A) \sqcap (S_{2}, A)] \sqcap$$

$$(M_{2}, A) \star [(S_{1}, A) \sqcap (S_{2}, A)]$$

$$\sqsubseteq [(M_{1}, A) \star (S_{1}, A)] \sqcap [(M_{2}, A) \star (S_{2}, A)]$$

$$\sqsubseteq (G_{1}, A) \sqcap (G_{2}, A).$$

So, $[(G_1, A) \sqcap (G_2, A)][(S_1, A) \sqcap (S_2, A)]^{-1} \cap \mathcal{U} \neq \emptyset$ and $(S_1, A) \sqcap (S_2, A) \in \mathcal{V}$. Hence $(G_1, A) \sqcap (G_2, A) \in \mathcal{U} \otimes \mathcal{V}$.

- (3) If $(G, A) \sqsubseteq (H, A)$ where $(G, A) \in \mathcal{U} \otimes \mathcal{V}$, then $(G, A)(S, A)^{-1} \cap \mathcal{U} \neq \emptyset$ for some $(S, A) \in \mathcal{V}$. Let $(M, A) \in \mathcal{U}$ such that $(M, A) \cdot (S, A) \sqsubseteq (G, A) \sqsubseteq (H, A)$. Hence $(M, A) \in (H, A)(S, A)^{-1}$. So $(H, A)(S, A)^{-1} \cap \mathcal{U} \neq \emptyset$. Consequently $(H, A) \in \mathcal{U} \otimes \mathcal{V}$.
- (4) Let $(G, A), (G, A)^c \notin \mathcal{U} \otimes \mathcal{V}$. Since $(G, A) \notin \mathcal{U} \otimes \mathcal{V}$, then $(G, A)(S, A)^{-1} \cap \mathcal{U} = \emptyset$ for all $(S, A) \in \mathcal{V}$. Since $(G, A)^c \notin \mathcal{U} \otimes \mathcal{V}$, then $(G, A)^c(S, A)^{-1} \cap \mathcal{U} = \emptyset$ for all $(S, A) \in \mathcal{V}$. Hence (G, A) and $(G, A)^c \notin \mathcal{U}$ which is a contradiction to Theorem (2.1(5)). Thus (G, A) or $(G, A)^c \in \mathcal{U} \otimes \mathcal{V}$. This shows that $\mathcal{U} \otimes \mathcal{V} \in \mathcal{B}(X, \tau, A)$ and so \otimes defines a binary operation on $\mathcal{B}(X, \tau, A)$.
- (b) Let $(G, A) \in (\mathcal{U} \otimes \mathcal{V}) \otimes \mathcal{W}$. Then for some $(F, A) \in \mathcal{W}$

$$(3.1) (G,A)(F,A)^{-1} \cap (\mathcal{U} \otimes \mathcal{V}) \neq \emptyset$$

Let $(T, A) \in \mathcal{U} \otimes \mathcal{V}$ and $(T, A) \not * (F, A) \sqsubseteq (G, A)$. This implies that $(T, A)(S, A)^{-1} \cap \mathcal{U} \neq \emptyset$ for some $(S, A) \in \mathcal{V}$ and $(T, A) \not * (F, A) \sqsubseteq (G, A)$ for some $(F, A) \in \mathcal{W}$). Let $(N, A) \in \mathcal{U}$ such that

$$(3.2) (N,A) * (S,A) \sqsubseteq (T,A)$$

Now
$$(S, A) \in [(S, A) * (F, A)](F, A)^{-1}$$
, and so $[(S, A) * (F, A)](F, A)^{-1} \cap \mathcal{V} \neq \emptyset$, $(F, A) \in \mathcal{W}$. Hence

$$(3.3) (S,A) * (F,A) \in \mathcal{V} \otimes \mathcal{W}$$

Also $(N, A) \in \mathcal{U}$ and from (3.1) and (3.2)

$$(N,A) \star [(S,A) \star (F,A)] = [(N,A) \star (S,A)] \star (F,A)$$

$$\sqsubseteq (T,A) \star (F,A)$$

$$\sqsubseteq (G,A)$$

Hence

$$(3.4) (G,A)[(S,A)*(F,A)]^{-1} \cap \mathcal{U} \neq \emptyset$$

Now combine (3.3) and (3.4) to obtain that $(G, A) \in \mathcal{U} \otimes (\mathcal{V} \otimes \mathcal{W})$. Hence, $(\mathcal{U} \otimes \mathcal{V}) \otimes \mathcal{W} \subseteq \mathcal{U} \otimes (\mathcal{V} \otimes \mathcal{W})$.

So by Remark (2.8), we get that $(\mathcal{U} \otimes \mathcal{V}) \otimes \mathcal{W} = \mathcal{U} \otimes (\mathcal{V} \otimes \mathcal{W})$.

(c) Let $x, y \in X, a \in A$ be fixed. Take $(G, A) \in SS(X, A)$ where $\forall b \in A$,

$$G(b) = \begin{cases} \{x\} &, b = a, \\ \emptyset &, \text{ otherwise}. \end{cases}$$

Let $(F, A) \in SS(X, A)$ where $\forall b \in A$

$$F(b) = \begin{cases} \{x * y\} &, b = a, \\ \emptyset &, \text{ otherwise}. \end{cases}$$

Now
$$(G, A) \in (F, A)(y, A)^{-1}$$
, since $(G, A) *(y, A) = (F, A)$ and $(y, A) \in e_a(y)$, $(G, A) \in e_a(x)$. So $(F, A) \in e_a(x) \otimes e_a(y)$.

Since the only soft ultrafilter contains (F, A) is $e_a(x * y)$, the final conclusion follows.

Corollary 3.1. $(\mathcal{B}(X,\tau,A),\otimes)$ is a semigroup.

Proof. Follows from Theorem (3.1).

Proposition 3.3. Let $a \in A$ be fixed, and $e_a(1)$ is the identity of $((\mathcal{B}(X, \tau, A), \otimes))$ where 1 is the identity of (X, *).

Proof. Let $\mathcal{U} \in (\mathcal{B}(X, \tau, A))$. We show that $\mathcal{U} = \mathcal{U} \otimes e_a(1)$. So let $(G, A) \in \mathcal{U}$, then

$$(G, A) * (1, A) = (G, A) \sqsubseteq (G, A) \implies (G, A)(1, A)^{-1} \cap \mathcal{U} \neq \emptyset, \ (1, A) \in e_a(1)$$

$$\Rightarrow (G, A) \in \mathcal{U} \otimes e_a(1)$$

$$\Rightarrow \mathcal{U} \subseteq \mathcal{U} \otimes e_a(1)$$

$$\Rightarrow \mathcal{U} = \mathcal{U} \otimes e_a(1), \text{ by Remark (2.8)}$$

Next, we show $\mathcal{U} = e_a(1) \otimes \mathcal{U}$. So let $(G, A) \in \mathcal{U}$, then

$$((1,A) * (G,A) = (G,A) \sqsubseteq (G,A) \implies ((1,A) \in (G,A) * (G,A)^{-1}$$

$$\Rightarrow (G,A) * (G,A)^{-1} \cap e_a(1) \neq \emptyset, (G,A) \in \mathcal{U}$$

$$\Rightarrow (G,A) \in e_a(1) \otimes \mathcal{U}$$

$$\Rightarrow \mathcal{U} \subseteq e_a(1) \otimes \mathcal{U}$$

$$\Rightarrow \mathcal{U} = e_a(1) \otimes \mathcal{U}, \text{ by Remark (2.8)}$$

Proposition 3.4. Let $a \in A$ be fixed, and (X, *) be a semigroup with identity 1, then $M = \{e_a(x) : x \in X\}$ is a subsemigroup of $((\mathcal{B}(X, \tau, A), \otimes))$. When (X, *) is a group, then M is a subgroup of $((\mathcal{B}(X, \tau, A), \otimes))$.

Proof. Let $e_a(x), e_a(y) \in M$, then $e_a(x) \otimes e_a(y) = e_a(x * y) \in M$. When (X, *) is a group, then for each $e_a(x) \in S$, there exists $(e_a(x))^{-1} = e_a(x^{-1}) \in M$ such that $e_a(x) \otimes e_a(x^{-1}) = e_a(x * x^{-1}) = e_a(1)$ and $e_a(x^{-1}) \otimes e_a(x) = e_a(x^{-1} * x) = e_a(1)$.

Proposition 3.5. For all $\mathcal{U} \in \mathcal{B}(X, \tau, A)$, the map

 $\lambda_{\mathcal{U}}: \mathcal{B}(X, \tau, A) \to \mathcal{B}(X, \tau, A)$ such that $\lambda_{\mathcal{U}}(\mathcal{V}) = \mathcal{U} \otimes \mathcal{V}$ is continuous.

Proof. Let $\widehat{(G,A)}$ be a basic open set in $\mathcal{B}(X,\tau,A)$. We show $\lambda_{\mathcal{U}}^{-1}(\widehat{(G,A)})$ is open. So let $\mathcal{V} \in \lambda_{\mathcal{U}}^{-1}(\widehat{(G,A)})$. Then

$$\lambda_{\mathcal{U}}(\mathcal{V}) \in \widehat{(G,A)} \implies \mathcal{U} \otimes \mathcal{V} \in \widehat{(G,A)}$$

$$\Rightarrow (G,A) \in \mathcal{U} \otimes \mathcal{V}$$

$$\Rightarrow (G,A)(F,A)^{-1} \cap \mathcal{U} \neq \emptyset \text{ for some } (F,A) \in \mathcal{V}$$

We claim that $\widehat{(F,A)} \subseteq \lambda_{\mathcal{U}}^{-1}(\widehat{(G,A)})$. To show this let $\mathcal{W} \in \widehat{(F,A)}$. Then

$$(F,A) \in \mathcal{W} \implies (G,A) \in \mathcal{U} \otimes \mathcal{W}$$

$$\Rightarrow \mathcal{U} \otimes \mathcal{W} \in \widehat{(G,A)}$$

$$\Rightarrow \lambda_{\mathcal{U}}(\mathcal{W}) \in \widehat{(G,A)}$$

$$\Rightarrow \mathcal{W} \in \lambda_{\mathcal{U}}^{-1}(\widehat{(G,A)})$$

Thus $\widehat{(F,A)} \subseteq \lambda_{\mathcal{U}}^{-1}(\widehat{(G,A)})$.

So for each element $\mathcal{V} \in \lambda_{\mathcal{U}}^{-1}(\widehat{(G,A)})$, there exists a basic open set $\widehat{(F,A)}$ such that

 $\mathcal{V} \in \widehat{(F,A)} \subseteq \lambda_{\mathcal{U}}^{-1}(\widehat{(G,A)})$. This implies that $\lambda_{\mathcal{U}}^{-1}(\widehat{(G,A)})$ is open and consequently we get $\lambda_{\mathcal{U}}$ is continuous.

Proposition 3.6. For all $\mathcal{U} \in \mathcal{B}(X, \tau, A)$, the map

 $\rho_{\mathcal{U}}: \mathcal{B}(X, \tau, A) \to \mathcal{B}(X, \tau, A)$ such that $\rho_{\mathcal{U}}(\mathcal{V}) = \mathcal{V} \otimes \mathcal{U}$ is continuous.

Proof. Let $\widehat{(G,A)}$ be a basic open set in $\mathcal{B}(X,\tau,A)$. We show $\rho_{\mathcal{U}}^{-1}(\widehat{(G,A)})$ is open. So, let $\mathcal{V} \in \rho_{\mathcal{U}}^{-1}(\widehat{(G,A)})$. Then

$$\rho_{\mathcal{U}}(\mathcal{V}) \in \widehat{(G,A)} \implies \mathcal{V} \otimes \mathcal{U} \in \widehat{(G,A)}$$

$$\Rightarrow (G,A) \in \mathcal{V} \otimes \mathcal{U}$$

$$\Rightarrow (G,A)(F,A)^{-1} \cap \mathcal{V} \neq \emptyset \text{ for some } (F,A) \in \mathcal{U}.$$

Let $(S, A) \in \mathcal{V}$ such that $(S, A) * (F, A) \sqsubseteq (G, A)$.

We claim that $\widehat{(S,A)} \subseteq \rho_{\mathcal{U}}^{-1}(\widehat{(G,A)})$. To show this, let $\mathcal{W} \in \widehat{(S,A)}$, then

$$(S,A) \in \mathcal{W} \implies (G,A)(F,A)^{-1} \cap \mathcal{W} \neq \emptyset, \ (F,A) \in \mathcal{U}$$

$$\Rightarrow (G,A) \in \mathcal{W} \otimes \mathcal{U}$$

$$\Rightarrow \mathcal{W} \otimes \mathcal{U} \in \widehat{(G,A)}$$

$$\Rightarrow \rho_{\mathcal{U}}(\mathcal{W}) \in \widehat{(G,A)}$$

Thus $\widehat{(S,A)} \subseteq \rho_{\mathcal{U}}^{-1}(\widehat{(G,A)})$.

So for each element $\mathcal{V} \in \rho_{\mathcal{U}}^{-1}(\widehat{(G,A)})$, there exists a basic open set $\widehat{(S,A)}$ such that: $\mathcal{V} \in \widehat{(S,A)} \subseteq \rho_{\mathcal{U}}^{-1}(\widehat{(G,A)})$.

This implies that $\rho_{\mathcal{U}}^{-1}(\widehat{(G,A)})$ is open and cosequently, we get $\rho_{\mathcal{U}}$ is continuous. \square

Proposition 3.7. Let $a \in A$ be fixed, and $x \in (X, *)$, then $e_a(x)$ is an idempotent of $(\mathcal{B}(X, \tau, A), \otimes)$ if and only if x is an idempotent in (X, *).

Proof. Let $e_a(x) \in (\mathcal{B}(X, \tau, A), \otimes)$. Then

$$e_a(x) \otimes e_a(x) = e_a(x) \Leftrightarrow e_a(x * x) = e_a(x)$$

 $\Leftrightarrow x * x = x$
 $\Leftrightarrow x \text{ is an idempotent in } (X, *).$

Theorem 3.2. $(\mathcal{B}(X,\tau,A),\otimes)$ is a semitopological semigroup.

Proof. Using Theorem (3.1) and Propositions (3.5), (3.6).

Theorem 3.3. Let (X, *) be a semigroup. Given two soft ultrafilters \mathcal{U}, \mathcal{V} on (X, τ, A) ,

$$\mathcal{U} \ominus \mathcal{V} = \{ (G, A) : (G, A) \not * (F, A) \in \mathcal{U} \text{ for some } (F, A) \in \mathcal{V} \}$$

Then $((\mathcal{B}(X,\tau,A),\ominus))$ is a semitopological semigroup. Moreover, if (X,*) is a group, then \ominus extends the operation * on X.

Theorem 3.4. Let (X, *) be a semigroup and Y be a subgroup of X. Then $\mathcal{B}(Y, \tau_Y, A)$ is a subsemigroup of $\mathcal{B}(X, \tau, A)$

Theorem 3.5. Let (X, *) be a semigroup. Given two soft ultrafilters \mathcal{U}, \mathcal{V} on (X, τ, A) , define $\mathcal{U} \odot \mathcal{V}$ collection of all

$$\mathcal{U} \odot \mathcal{V} = \{ (G, A) : (G, A) \sqcap (F, A) \in \mathcal{U} \text{ for some } (F, A) \in \mathcal{V} \}.$$

Then $((\mathcal{B}(X,\tau,A),\odot)$ is a semitopological semigroup.

References

[Aygunoglu and Aygun, 2011] Aygunoglu, A. and Aygun, H. (2011). Some notes on soft topological spaces. *Neural Comput and Applic.*, 21:113–119.

[Clifford and Preston, 1961] Clifford, J. and Preston, G. (1961). The Algebraic Theory of semigroupsI. Math. Surveys 7, Amer. Math. Soc., Providence.

A CONSTRUCTION OF A SEMITOPOLOGICAL SEMIGROUP OF SOFT ULTRAFILTERS

[EL-Mabhouh and Mousa, 2018] EL-Mabhouh, A. and Mousa, W. (2018). Compactification of a soft topological space. *International Mathematical Forum*, 13(7).

[Georgiou and Megaritis, 2014] Georgiou, D. and Megaritis, A. (2014). Soft Set Theory and Topology, volume 15, pages 93–109.

[Maji and Roy, 2003] Maji, P., B. R. and Roy, A. (2003). Soft set theory. Computer and Mathematics with Application, 45(3).

[Molodtsov, 1999] Molodtsov, D. (1999). Soft set theory-first results. Computers and Mathematics with Applications, 37:19–31.

[P. Wang and He, 2015] P. Wang, P. and He, J. (2015). Characterization of soft topological spaces based on soft filters. *Journal of Theoretical and Applied Information Technology*, 79(3).

[Pei and Miao, 2005] Pei, D. and Miao, D. (2005). From soft sets to information systems. volume 2. Proceedings of the IEEE International Conference on Granular Computing.

[Peyghan and Tayebi, 2012] Peyghan, E., S. B. and Tayebi, A. (2012). On soft connevtedness. arXiv:1202-1668.

[Shabir and Naz, 2011] Shabir, M. and Naz, M. (2011). On soft topological spaces. *Computers and Mathematics with Applications*, 61:1786–1799.

(EL-Mabhouh) Department of Mathematics, Faculty of Science, Islamic University of Gaza, Gaza, Palestine,

Email address: mabhouh@iugaza.edu.ps