MacDonald codes over the ring
\[\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2 \]

Mohammed M. AL-Ashker
Mathematics Department
Islamic University of Gaza P.O.Box 108, Gaza, Palestine
E.mail:mashker@iugaza.edu.ps

Abstract: In this paper, we construct MacDonald codes of type \(\alpha \) and \(\beta \) over the ring \(\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2 \) where \(u^3 = 0 \) and study Gray image properties, torsion code, weight distribution. Finally we obtain linear binary codes by gray map.

AMS, Mathematics Classification: Primary 94B05, Secondary 11H71
Key words: MacDonald codes, linear \(\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2 \)-codes.
1 Introduction

Recently codes over finite rings have received much attention. In [1] MacDonald codes of type α and β over the ring $\mathbb{F}_2 + u\mathbb{F}_2$ were given as a generalization of MacDonald codes over \mathbb{Z}_4 [5]. In this paper, we construct MacDonald codes over the ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$, where $u^3 = 0$ and $\mathbb{F}_2 = \{0, 1\}$ by using simplex codes over the ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$, besides we describe their properties such as minimum Hamming, Lee and generalized Lee weights.

2 Preliminaries

The ring $R = \mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2 = \mathbb{F}_2[u]/(u^3)$ is a commutative chain ring of 8 elements which are $\{0, 1, u, u^2, v, v^2, uv, v^3\}$, where $u^3 = 0$, $v = 1 + u$, $v^2 = 1 + u^2$, $v^3 = 1 + u + u^2$, $uv = u + u^2$.

The ring R is a commutative chain ring with maximal ideal $uR = \{0, u, u^2, uv\}$. Since u is nilpotent with nilpotent index 3, we have

$$R \supset (uR) \supset (u^2R) \supset (u^3R) = 0.$$

Moreover $R/uR \cong \mathbb{F}_2$, and $|u^iR| = 2|(u^{i+1}R)| = 2^{3-i}$, $i = 0, 1, 2$.

A linear code C of length n over the ring R is an R-submodule of R^n. An element of C is called a codeword of C. The Hamming weight $wt_H(c)$ of a codeword c is the number of nonzero components. The minimum Hamming weight $wt_H(C)$ of a code C is the smallest weight among all its nonzero codewords. For $x = (x_1, x_2, \cdots, x_n)$, and $y = (y_1, y_2, \cdots, y_n) \in R^n$, $d_H(x, y) = |\{i : x_i \neq y_i\}|$ is called Hamming distance between any distinct vectors $x, y \in R^n$ and is denoted by $d_H(x, y) = wt_H(x - y)$. The minimum Hamming distance between distinct pairs of codewords of a code C is called minimum distance of C and denoted by $d_H(C) = wt_H(C)$. The Lee weight of an element $r \in R$ is analogous to the definition of the Lee weight of the elements of the ring \mathbb{Z}_8 [7]. The Lee weight a_r of an element r of the ring R is
given by the following equation:

\[a_r = \begin{cases}
0 & \text{if } r = 0 \\
1 & \text{if } r = 1, \text{ or } v^2 \\
2 & \text{if } r = u \text{ or } uv \\
3 & \text{if } r = v \text{ or } v^3 \\
4 & \text{if } r = u^2
\end{cases} \]

Then the Lee weight of an element \(x = (x_1, x_2, ..., x_n) \) of \(R^n \) is

\[\text{wt}_L(x) = \sum_{i=1}^{n} a_r. \]

Example 2.1. Let \(x = (1, 0, 0, u, v, v^2, u^2, uv) \) then \(\text{wt}_L(x) = 13 \).

The Lee distance between \(x \) and \(y \in (R)^n \) is denoted; \(d_L(x, y) = \text{wt}_L(x - y) \). The minimum Lee distance \(d_L \) of a code \(C \) is defined analogously in [7]. Given \(x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n) \in R^n \) their scalar product is, \(xy = x_1y_1 + x_2y_2 + \cdots + x_ny_n \). Two words \(x, y \) are called orthogonal if \(xy = 0 \). For the codes \(C \) over \(R \), its dual \(C^\perp \) is defined as follows, \(C^\perp = \{ x : xy = 0, \forall y \in C \} \). If \(C \subseteq C^\perp \), we say that the codes \(C \) is self-orthogonal and if \(C = C^\perp \) we say that the code is self-dual. Two codes are equivalent if one can be obtained from the other by permuting the coordinates.

Any code over \(R \) is permutation equivalent to a code \(C \) with generator matrix of the form.

\[
G = \begin{pmatrix}
I_{k_0} & A_{01} & A_{02} & A_{03} \\
0 & uI_{k_1} & uA_{12} & uA_{13} \\
0 & 0 & u^2I_{k_2} & u^2A_{23}
\end{pmatrix},
\]

(2.1)

where \(A_{ij} \) are binary matrices for \(i > 0 \). A code with a generator matrix in this form is of type \(\{k_0, k_1, k_2\} \) and has \(8^{k_0}4^{k_1}2^{k_2} \) vectors [6].

In reference [2], the generalized gray map \(\phi_{GL} \) was defined as follows:

\[
\phi_{GL} : R^n \rightarrow \mathbb{F}_2^{4n}.
\]

\[
\phi_{GL}(x + uy + u^2z) = (z, x + z, y + z, x + y + z), \text{ where } x, y \text{ and } z \in \mathbb{F}_2 \text{ and } (x + uy + u^2z) \in R^n.
\]
Proposition 2.1. The generalized gray map ϕ_{GL} is distance preserving linear map or isometry from $((R)^n, d_{GL})$ to $((F_2)^4n, d_H)$ [2].

In ref. [2], the generalized Lee weight of the elements $t \in R$ are given by the following equations:

$$wt_{GL}(t) = wt_H(\phi_{GL}(t)) = \begin{cases} 0 & \text{if } t = 0, \\ 2 & \text{if } t \neq u^2, \\ 4 & \text{if } t = u^2. \end{cases}$$

The generalized Lee distance d_{GL} of C is defined analogously in [2].

Corollary 2.2. Let C be a linear code over R, then

$$d_H \geq \left\lceil \frac{d_{L}}{4} \right\rceil, \text{ and } d_H \geq \left\lceil \frac{d_{GL}}{4} \right\rceil.$$

A linear code over C over R is said to be of type $\alpha(\beta)$ if

$$d_H = \left\lceil \frac{d_{GL}}{4} \right\rceil \text{ if } d_H > \left\lceil \frac{d_{GL}}{4} \right\rceil.$$ See [2].

Definition 2.1. [5] For each $1 \leq i \leq n$, let $A_H(i) (A_L(i) \text{ or } A_{GL}(i))$ be the number of codewords of Hamming (Lee) or generalized Lee weight i in C.

Then $\{A_H(0), A_H(1), \ldots, A_H(n)\}, (\{A_L(0), A_L(1), \ldots, A_L(n)\})$ or

$(\{A_{GL}(0), A_{GL}(1), \ldots, A_{GL}(n)\})$ is called the Hamming (Lee) or generalized Lee weight distribution of C.

The presence of zero divisors in R creates problem in finding linear dependence of vectors in R^n. Consequently, defining the dimension of a module as a cardinality of its basis is not meaningful. Recently in [8] Vazirani, Saran and Sundar Rajan have introduced the notion of p-dimension for finitely generated modules over Z_p. As a consequence we define the 2-dimension for a code C over R in the following.

A vector $v \in R^n$ is a 2-linear combination of the vectors v_1, v_2, \ldots, v_k if $v = l_1v_1 + l_2v_2 + \ldots + l_kv_k$ with $l_i \in F_2$ for $1 \leq i \leq k$. A subset $B = \{v_1, v_2, \ldots, v_k\}$ of C is a 2- basis for the linear code C over
if for each \(i = 1, 2, \cdots, k - 1 \), \(uv_i \) is a 2-linear combination of \(v_{i+1}, \cdots, v_k \), \(uv_k = 0 \). \(C \) is the 2-linear span of \(B \) and \(B \) is 2-linearly independent. The number of elements in the 2-basis for \(C \) is the 2-dimension of \(C \). It follows that the rows of the matrix

\[
\mathcal{B} = \begin{pmatrix}
I_{k_0} & A_{01} & A_{02} & A_{03} \\
u I_{k_0} & u A_{01} & u A_{02} & u A_{03} \\
u^2 I_{k_0} & u^2 A_{01} & u^2 A_{02} & u^2 A_{03} \\
0 & u I_{k_1} & u A_{12} & u A_{13} \\
0 & u^2 I_{k_1} & u^2 A_{12} & u^2 A_{13} \\
0 & 0 & u^2 I_{k_2} & u^2 A_{23}
\end{pmatrix}
\]

form a 2-basis for a code \(C \) generated by the matrix \(G \) given by equation (2.1). A linear code \(C \) over \(R \) of length \(n \), 2-dimension \(k = \sum_{i=0}^{2}(3-i)k_i \), minimum distance \(d_H \), \(d_L \) and \(d_G \) is called an \([n,k,d_H,d_L,d_G],[n,k,d_H]\) or simply \([n,k]\) code. The higher torsion codes were defined in ref. [3]. In ref. [6] for a code over \(R \), the authors defined the following torsion codes over the field \(F_2 \). For \(0 \leq i \leq 2 \), \(Tor_i(C) = \{ v : u^iv \in C \} \).

In general we note that, \(Tor_0(C) \subseteq Tor_1(C) \subseteq Tor_2(C) \). If \(i = 0 \), \(Tor_0(C) \) is called the residue code and is denoted by \(Res(C) \). If \(C \) is a free module then \(Tor_0(C) = Tor_2(C) \).

3 Main Results

In this section we will study the Macdonald codes of types \(\alpha \) and \(\beta \) over \(R \) and also we study the properties of their images under the Generalized Gray map.

3.1 R-Macdonald codes of types \(\alpha \) and \(\beta \)

The simplex codes over \(R \) of type \(\alpha \) and \(\beta \) have been constructed in [2]. A type \(\alpha \) simplex code \(S_{k}^{\alpha} \) is a linear code over \(R \) constructed inductively by the following generator matrix. Let \(G_{k}^{\alpha} \) be a \(k \times 2^{3k} \) matrix over \(R \) defined inductively by

\[
G_{k}^{\alpha} = \left[
\begin{array}{c|c|c|c|c|c|c}
00...0 & 11...1 & uu...u & \cdots & v^3v^3...v^3 \\
G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & G_{k-1}^{\alpha} & \cdots & G_{k-1}^{\alpha}
\end{array}\right]; k \geq 2 \tag{3.1}
\]
where

\[G_1^\alpha = [0, 1, u, v, u^2, uv, v^2, v^3]. \]

A type \(\beta \) simplex code \(S_k^\beta \) is a linear code over \(R \) constructed by omitting some columns from \(G_k^\alpha \).

Let \(G_k^\beta \) be the \(k \times 2^{2(k-1)}(2^k - 1) \) matrix defined inductively by

\[
G_2^\beta = \begin{bmatrix}
111 \ldots 1 \\
0, 1, u, v, u^2, uv, v^2, v^3 \\
\end{bmatrix}
\begin{bmatrix}
0 & u & u^2 & uv \\
1 & 1 & 1 & 1 \\
\end{bmatrix},
\]

and for \(k > 2 \),

\[
G_k^\beta = \begin{bmatrix}
111 \ldots 1 & 00 \ldots 0 & u, u, \ldots, u & u^2, u^2, \ldots, u^2 & uv, uv, \ldots, uv \\
G_{k-1}^\alpha & G_{k-1}^\beta & G_{k-1}^\alpha & G_{k-1}^\beta & G_{k-1}^\alpha & G_{k-1}^\beta \\
\end{bmatrix},
\]

where \(G_{k-1}^\alpha \) is the generating matrix of \(S_{k-1}^\alpha \) and \(G_k^\beta \) is obtained from \(G_k^\alpha \) by deleting \(2^{2(k-1)}(3 \cdot 2^k + 1) \) columns.

We will now construct the Macdonald codes by using the generator matrices of simplex codes. For \(1 \leq t \leq k - 1 \), Let \(G_{k,t}^\alpha \) (\(G_{k,t}^\beta \)) be the matrix obtained from \(G_k^\alpha \) (\(G_k^\beta \)) by deleting columns corresponding to the columns of \(G_t^\alpha \) (\(G_t^\beta \)) by deleting columns corresponding to the columns of \(G_t^\alpha \) (\(G_t^\beta \)). i.e.,

\[
G_{k,t}^\alpha = \begin{bmatrix}
G_k^\alpha \setminus G_t^\alpha \\
\end{bmatrix} \quad (3.2)
\]

and

\[
G_{k,t}^\beta = \begin{bmatrix}
G_k^\beta \setminus G_t^\beta \\
\end{bmatrix} \quad (3.3),
\]

where

\[
\begin{bmatrix}
A \\
\end{bmatrix} \setminus \begin{bmatrix}
B \\
\end{bmatrix}
\]

denotes the matrix obtained from the matrix \(A \) by deleting the matrix \(B \) and \(0 \) in (3.2)(respectively) (3.3)) is a \((k - t) \times e \) (respectively \((k - t) \times 2^{2(t-1)}(2^t - 1) \)) zero matrix. The code \(\mathcal{M}_{k,t}^\alpha(\mathcal{M}_{k,t}^\beta) \) was generated by the matrix \(G_{k,t}^\alpha \) (\(G_{k,t}^\beta \)) is the punctured code of \(S_k^\alpha \) (\(S_k^\beta \)) and is called a MacDonald code. i.e. (The MacDonald codes are obtained by deleting some columns of the generator matrices \(G_k^\alpha \) (\(G_k^\beta \)) of the simplex codes \(S_k^\alpha \) (\(S_k^\beta \))).

6
3.2 Properties

The code $\mathcal{M}^\alpha_{k,t}$ is an $R-$code of length $n = 2^{3k} - 2^{3t}$ and is a 2-dimensional $3k$ and $\mathcal{M}^\beta_{k,t}$ is an $R-$code of length $n = 2^{2(k-1)}(2^k - 1) - 2^{2(t-1)}(2^t - 1) = 3^{3k-2} - 2^{2k-2} - 3^{3t-2} + 2^{2t-1}$ and is a 2-dimensional $3k$.

Lemma 3.1. The torsion code $\text{Tor}_2(\mathcal{C})$ of $\mathcal{M}^\alpha_{k,t}$ is a binary linear code $[2^{3k} - 2^{3t}, k, 2^{3k-1} - 2^{3t-1}]$ two weight code with weight distributions

1) $A_H(0) = 1$.

2) $A_H(2^{3k-1} - 2^{3t-1}) = 2^k - 2^{k-t} = 2^{k-t}(2^t - 1)$.

3) $A_H(2^{3k-1}) = (2^{k-t} - 1)$.

Proof. Since the torsion code of $\mathcal{M}^\alpha_{k,t}$ is the set of codewords obtained by replacing u^2 by 1 in all linear combinations of the rows of the matrix $u^2G_{k,t}^\alpha$ (where $G_{k,t}^\alpha$ is defined in (3.2)). We prove by induction with respect to k and t. For $k = 2$, and $t = 1$ the result holds. Suppose the result holds for $k - 1$ and $1 \leq t \leq k - 2$. Then for k and $1 \leq t \leq k - 1$ the matrix $u^2G_{k,t}^\alpha$ takes the form

$$u^2G_{k,t}^\alpha = \left[u^2G_k^\alpha \setminus 0 \right].$$

Each nonzero codeword of $u^2\mathcal{M}^\alpha_{k,t}$ has Hamming weight either $2^{3k-1} - 2^{3t-1}$ or 2^{3k-1} and the dimension of the torsion code of $\mathcal{M}^\alpha_{k,t}$ is k, then there will be $2^k - 2^{k-t}$ codewords of Hamming weight $2^{3k-1} - 2^{3t-1}$ and the number of codewords with Hamming weight 2^{3k-1} is $(2^{k-t} - 1)$. The result now follows.

Lemma 3.2. The torsion code of $\mathcal{M}^\beta_{k,t}$ is a binary linear code $[2^{2(k-1)}(2^k - 1) - 2^{2(t-1)}(2^t - 1), k, 2^{3k-3} - 2^{3t-3}]$ with weight distributions

1) $A_H(0) = 1$.

2) $A_H(2^{3k-3} - 2^{3t-3}) = 2^{k-t}(2^t - 1)$ and

3) $A_H(2^{3k-3}) = (2^{k-t} - 1)$.

Proof. Same as the proof in lemma 3.1.
Remark 3.1. Each of the first $k-t$ rows of (3.2) has total number of units 2^{3k-1} and total number of nonzero divisors $3 \cdot 2^{3k-3}$ and the last t rows has total number of units $2^{3k-1} - 2^{3t-1}$ and total number of nonzero divisors $3 \cdot (2^{4k-3} - 2^{3t-3})$.

Theorem 3.3. The Hamming, Lee and Generalized Lee weight distributions of $M^\alpha_{k,t}$ are

1) $A_H(0) = 1$, $A_H(2^{3k-1} - 2^{3t-1}) = 2^{k-1}(2^t - 1)$, $A_H(2^{3k-1}) = (2^{k-t+1} - 1)$, $A_H(3 \cdot 2^{3k-2}) = 2^{k-t}(2^{k-1} - 1)$, $A_H(3 \cdot (2^{3k-2} - 2^{3t-2})) = 2^{2k-t}(2^t - 1)$, $A_H(7 \cdot 2^{3k-3}) = 2^{2k-t}(2^{k-1} - 1)$, $A_H(7 \cdot (2^{3k-3} - 2^{3t-3})) = 2^{3k-t}(2^t - 1)$, $A_H(7 \cdot 2^{3k-3} - 2^{3t-1}) = 2^{2k-t} - (2^t - 1)(2^{k-t} - 1)$.

2) $A_L(0) = 1$, $A_L(2^{3k+1}) = 2^{3(k-t)} - 1$, $A_L(2^{3k+1} - 2^{3t+1}) = 2^{3k-3t}(2^{3t} - 1)$.

3) $A_{GL}(0) = 1$, $A_{GL}(2^{3k+1}) = 2^{3(k-t)} - 1$, $A_{GL}(2^{3k+1} - 2^{3t+1}) = 2^{3(k-t)}(2^{3k} - 1)$.

Proof. Each non zero codeword of $M_{k,t}$ has Hamming weight either $2^{3k-1} - 2^{3t-1}$, 2^{3k-1}, $3 \cdot 2^{3k-2}$, $3(2^{3k-2} - 2^{3t-2})$, $3 \cdot 2^{2k-2} - 2^{2t-1}$, $7 \cdot 2^{3k-3} - 2^{3t-3}$, $7(2^{3k-3} - 2^{3t-3})$, or $7 \cdot 2^{3k-3} - 2^{3t-1}$, Lee weight either 2^{3k+1}, $2^{3k+1} - 2^{3t+1}$ and Generalized lee weights 2^{3k+1} or $2^{3k+1} - 3^{3t+1}$. The counting of the weight followed by the weight distribution of the torsion code of $M_{k,t}$, (see lemma 3.1) and the argument is similar to that used in [2].

Theorem 3.4. The image of $M^\alpha_{k,t}$ under the generalized Gray map is a linear $[2^{3k+1} - 2^{3t+1}, 2^{3k}, 2^{3k+1} - 2^{3t+1}]$ binary two weight code with possible weight $2^{3k+1} - 2^{3t+1}$ and 2^{3k+1}.

Proof. The binary image of the generalized Gray map is linear by proposition 2.1. We prove by induction with respect to k. For $k = 2$ the result holds. The matrix (3.2) can be written as $G_{k,t}^\alpha = [G_{k,k-1}^\alpha | G_{k,t-1}^\alpha]$. Suppose the result is true for $k - 1$, then the possible Generalized weight of $M^\alpha_{k-1,t}$ are $2^{3(k-1)+1} - 2^{3(t-1)+1}$ and $2^{3(k-1)+1}$ and the possible Generalized Lee weight of $M^\alpha_{k-1,t}$ are $2^{3k+1} - 2^{3(k-1)+1}$ and 2^{3k+1}. Then the possible Lee weight of $M^\alpha_{k,t}$ are $2^{3k-2} - 2^{3t+1} + 2^{3k+1} - 2^{3k-2} = 2^{3k+1} - 2^{3t+1}$ and 2^{3k+1}. Since by proposition 2.1 the minimum Hamming weight of the binary image of the generalized Gray map of $M^\alpha_{k,t}$ is equal the minimum Lee weight of $M^\alpha_{k,t}$ then the result follows.
Theorem 3.5. The image of $M_{k,t}^2$ under the generalized Gray map is a linear $[2^{3k+1} - 2^{3t+1} - 2^{2k+1} + 2^{2t+1}, 2^{3k}]$ binary code.

Proof. Similar to the proof in theorem 3.4.

3.3 Conclusion

In this paper we have studied R- MacDonald codes and some of their properties. One can also extend these ideas to a more general rings like $\sum_{n=0}^{s} u^n F_2$ and to $\sum_{n=0}^{s} u^n F_p$, where p is a prime integer and $u^{s+1} = 0$.

References

