1. Introduction:

A real form G_0 of a complex semisimple Lie group G has only finitely many orbits in any given compact G-homogeneous projective algebraic manifold $Z = G/Q$ and therefore there are open orbits, and a unique closed orbit $\gamma^c ([2],[6])$.

In our paper we study the orbits of the real form $SU (p, q)$ and $SO(p, q)$ when they act on the Grassmannian spaces. In both cases we study the parametrization of the closed orbit and the open orbits which play a role in understanding the geometry of Grassmannian spaces, see ([2],[6] and [8]).

1. The parametrization of $SU(p, q)$-Orbits in Grassmannian $Gr(r, n)$

1.1 Some basics in Linear Algebra

Let V be a vector space C^n. Let $b(v, w), v, w \in V$, be a bilinear form defined V and $h(v, w) = b(v, w)$ is its Hermiation form.

Definition 2.1. Any two nonzero vectors $v_1, v_2 \in V$ are orthogonal if they satisfy that

$$h(v_1, v_2) = 0.$$

Definition 2.2. For any vector $v \in V$ if $h(v, v) > 0$, we call v a positive vector, if $h(v, v) < 0$, we call v a negative vector and if $h(v, v) = 0$, we call v an isotropic vector.
For the basic information in this section and more see [3].

Definition 2.3. A set $\mathcal{B} = \{v_1, \ldots, v_n\}$ is an orthonormal basis of (V, h) if
1. $h(v_i, v_j) = 0$, $\forall i, j$ with $i \neq j$,
2. $h(v_i, v_i) = \pm 1$.

Remark 2.4. By using Definition 2.3, we can write $V = W' \oplus W$ where W' is a maximal positive subspace of V generated by positive vectors in \mathcal{B}, and W is a maximal negative subspace of V generated by negative positive vectors in \mathcal{B}. So W' is the orthogonal complement of W.

Definition 2.5. A subspace $W \subseteq V$ is called nondegenerate if and only if $W \cap W^\perp = \{0\}$, and called maximally degenerate if $W \subset W^\perp$.

Notation 2.6. We will denote the Hermitian form in the subspace W to be $h \mid W = h_{W,W}$.

Definition 2.7. If V is nondegenerate space of dimension n such that $V = W' \oplus W$, then the signature of V is $\text{sign}(V) = (\dim W, \dim W')$.

Question 1. How can we find an orthogonal basis for any subspace (W, h) of dimension r?
To answer this question we have three cases:-

Case 1:- If W is maximally degenerate subspace, then
$$\forall w_r, w_j \in W, \quad h(w_r, w_j) = 0.$$
So we need only to choose r-linearly independent vectors and then we finish.

Case 2:- If W is nondegenerate, fix a nonisotropic vector $w_1 \in W$. Let $X_1 = Cw_1$, then
$$X_1 \cap X_1^\perp = \{0\}.$$
Choose nonisotropic vector $w_2 \in X_1^\perp$ so $h(w_2, w_2) = 0$.

Let $X_2 = \text{span}\{w_1, w_2\}$, then
$$X_2 \cap X_2^\perp = \{0\}.$$
Choose nonisotropic vector $w_3 \in X_2^\perp$, so $h(w_3, w_i) = 0 \forall i = 1, 2$.

Assume that we have $r - 1$ nonisotropic orthogonal vectors w_2, \ldots, w_{r-1}. Let
$$X_{r-1} = \text{span}\{w_2, \ldots, w_{r-1}\},$$
then
$$X_{r-1} \cap X_{r-1}^\perp = \{0\}.$$
Choose nonisotropic vector $w_r \in X_{r-1}^\perp$, so $h(w_r, w_i) = 0 \forall i = 1, \ldots, r - 1$.

Hence we have r orthogonal vectors and these vectors spans W.

Case 3:- If $W \cap W^\perp \neq \{0\}$ and $W \cap W^\perp \subset W$, then
$$W = Q_t \oplus B_s$$
where $\dim Q_t = t$, $\dim B_s = s$, $t + s = r$ and
$$B_s = W \cap W^\perp = W^\perp$$
and $Q_t \cap Q_t^\perp = \{0\}$.

From case 1, any s linearly independent vectors $\{v_1, \ldots, v_s\}$ from B_s spans B_s, and from case 2, we can find an orthogonal basis $\{w_1, \ldots, w_r\}$ for Q_t.
Therefore, $\{v_1, \ldots, v_s, w_1, \ldots, w_r\}$ is an orthogonal basis for W.

Example 2.8. Consider the vector space $V = \mathbb{C}^6$. Let the hermitian form h to be defined as

$$h(v, w) = b(v, \sigma(w)) = -\sum_{i=1}^{3} v_1 \sigma(w_1) + \sum_{i=4}^{6} v_i \sigma(w_i)$$.
Fix the standard basis \(\{e_1, e_2, e_3, e_4, e_5, e_6\} \) to be the orthonormal basis of \(V \).

The subspace \(W_1 = \text{span}\{e_1 + e_6, e_2 + e_5, e_3\} \) is a degenerate subpace with the orthonormal basis \(\{e_1 + e_6, e_2 + e_5, e_3\} \)

since \(h(e_1 + e_6, e_2 + e_5) = 0\) and \(h(e_1 + e_6, e_3) = 0 \) and \(h(e_2 + e_5, e_3) = 0 \). On the other hand, the subspace \(W_2 = \text{span}\{e_5, e_4\} \) is nondegenerate subpace with the orthonormal basis \(\{e_5, e_4\} \) since \(h(e_5, e_4) = 0\) and \(h(e_5, e_1) = -1 \) and \(h(e_4, e_1) = 1 \), and \(e_5, e_4 \) is an orthonormal basis.

Define the subspace \(W_3 = W_1 \bigoplus W_2 = \text{span}\{e_1 + e_6, e_2 + e_5, e_3, e_5, e_4\} \), by GramSchmidt Orthogonalisation Process we can find orthonormal basis for \(W_3 \) to be \(W_3 = \text{span}\{e_1 + e_6, e_2 + e_5, e_3\} \) which means that we can write \(W_3 = B \bigoplus Q \) where \(B = \text{span}\{e_2 + e_3\} \) and \(Q = \text{span}\{e_5, e_4\} \), where \(B \) is degenerate subpace and \(Q \) is nondegenerate subpace.

2.2 The Orbit Structure of the nondegenerate subspaces

Let \((V, h)\) be the complex nondegenerate vector space \(C^n \) of signature \((p, q)\), where \(p + q = n \). Let \(G = SL(n, C) \), and \(P \) be a maximal parabolic subgroup of \(G \). In this case the homogenous space \(Z = G/P \) can be identified with the set of all subspaces with dimension \(r \) called the Grassmannian \(Gr(r,n) \). Define the bilinear form \(b \) on \(V \) to be

\[
b(v, w) = -\sum_{i=1}^{q} v_i w_i + \sum_{i=q+1}^{n} v_i w_i\]

Consider the real form \(G_0 = SU(p,q) \) of \(SL(n, C) \) where \(p + q = n \). The Hermitian form \(h : C^n \times C^n \to C \) defined \(SU(p,q) \) is the standard Hermitian form of signature \((p, q)\) defined by

\[
h(v, w) = -\sum_{i=1}^{q} v_i \overline{w_i} + \sum_{i=q+1}^{n} v_i \overline{w_i}, \quad \forall v, w \in C^n
\]

then \(SU(p,q) \) is the group of isometries of \(V \) associated to \(h \), that is if \(T \in SU(p,q) \), then \(h(Tv, Tw) = h(v,w) \).

Let us concerned with the action of the real form \(SU(p,q) \) on \(Gr(r,n) \), \(SU(p,q) \times Gr(r,n) \to Gr(r,n) \).

By the results given by Wolf in [6], this action has finitely many orbits with a unique closed orbit and an open orbit exists. Here a question arise: How can we parameterize the orbits of this action? In the following sections we prove that the orbits of the above action parameterized by signature.

Definition 2.9. Given a subspace \((W, h)\) of \((V, h)\). We define a signature of the subspace \(W \) to be \(\text{sign}(W) = (n^+, n^-, d) \) where \(n^+ \) is the dimension of maximal positive subspace of \(W \) and \(n^- \) is the dimension of maximal negative subspace of \(W \) and \(d = \dim(W \cap W^\perp) = \dim(W^-) \).

Definition 2.10. Given a subspace \((W, h)\) of \((V, h)\). We define \(\text{sign}(W) = (n^+, n^-, d) \) where \(n^+ \) is the dimension of maximal positive subspace of \(W \) and \(n^- \) is the dimension of maximal negative subspace of \(W \) and \(d = \dim(W \cap W^\perp) = \dim(W^-) \).

Definition 2.11. Given a subspace \((W, h)\) of \((V, h)\) has the same signature as the subspace signature.

Proposition 2.12. Given \(X_1, X_2 \in Gr(r,n) \) be nondegenerate subspaces such that \(\text{sign}(X_1) = \text{sign}(X_2) \), then there exist \(g \in SU(p,q) \) with \(g(X_1) = X_2 \).

Proof. Given two nondegenerate subspaces \(X_1, X_2 \in Z \) with orthonormal bases \(\beta_1 = \{v_1, \ldots, v_r\} \) for \(X_1 \), and \(\beta_2 = \{u_1, \ldots, u_r\} \) for \(X_2 \). These two bases have the same signature and we can rearrange
them to have firstly the positive vectors and then the negative.

Similarly for X^+_1, $X^+_2 \in Z$ with orthonormal bases

$$\beta^+_1 = \{v_{r+1}, \ldots, v_n\}, \quad \beta^+_2 = \{u_{r+1}, \ldots, u_n\}$$

for X^+_1, X^+_2 respectively, these two bases β^+_1, β^+_2 have the same signature and we can rearrange them to have firstly the positive vectors and then the negative. So we can assume that v_i and u_i are both positive or both negative.

Now, since $V = X_1 \oplus X^+_1 = X_2 \oplus X^+_2$, we can define a linear map

$$T : V \rightarrow V \text{ by } T(v_i) = u_i \text{ for } v_i \in \theta_1 \text{ and } u_i \in \theta_2,$$

and

$$T(v^-) = u^-_i$$

for $v_i \in \beta^+_1$ and $u_i \in \beta^+_2$, so $T(X_1) = X_2$.

To show that $h(T(w_i), T(w_j)) = h(w_i, w_j)$ for $w_i, w_j \in X_1$, start with bases vectors $v_i, v_j \in X_1$, if $i \neq j$, then

$$h(T(v_i), T(v_j)) = h(u_i, u_j) = 0 = h(v_i, v_j), \quad (1)$$

and if $i = j$, then

$$h(T(v_i), T(v_j)) = h(u_i, u_i) = 1 = h(v_i, v_i). \quad (2)$$

Let $w_1, w_2 \in V$ where $w_1 = \sum_{k=1}^n \alpha_k v_k$ and

$$w_2 = \sum_{t=1}^n \gamma_t v_t,$$

then

$$h(T(w_1), T(w_2)) = h(T(\sum_{k=1}^n \alpha_k v_k), T(\sum_{t=1}^n \gamma_t v_t))$$

$$= h(\sum_{k=1}^n \alpha_k T(v_k), \sum_{t=1}^n \gamma_t T(v_t))$$

$$= \sum_{k=1}^n \sum_{t=1}^n \alpha_k \gamma_t h(T(v_k), T(v_t))$$

By (1) and (2) $= \sum_{k=1}^n \sum_{t=1}^n \alpha_k \gamma_t h(v_k, v_t)$

$$= h(\sum_{k=1}^n \alpha_k v_k, \sum_{t=1}^n \gamma_t v_t) = h(w_1, w_2).$$

Therefore $T \in SU(p,q)$.

Example 2.13. Let $G = SU(1,2)$ and define the non-degenerate subspaces $X_1 = \text{span}(e_1,e_3)$ and $X_2 = \text{span}(e_1,e_2)$. The signature $\text{sign}(X_1) = \text{sign}(X_2) = (1,1)$.

Choose the matrix $g \in SU(1,2)$ where

$$g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

such that $g.e_1 = e_1$ and $g.e_3 = e_2$, which means that $g.X_1 = X_2$.

2.3 The Orbit Structure of the degenerate subspaces

Recall that the signature of the vector space $V = \mathbb{C}^n$ with respect to the group $SU(p,q)$ is (p,q).

Lemma 2.14. Given any isotropic vector $v \in V$, then $v = v^+ + v^-$ where v^+, v^- are orthogonal positive and negative vectors respectively.

Proof. Assume that V_1 is a maximal positive subspace

$$h(w_1, w_1) = 0$$
Parametrization of the orbits of the real forms SU(p, q) and SO(p, q) in Grassmannian

in V then \(V_1 \) is a maximal negative

subspace where \(V_1 \cap V_1^\perp = \{0\} \) because

\(\text{sign}(V) = (p,q,0) \). Then any vector \(x \in V \) is

uniquely represented as \(x = t^+ + t^- \), where \(t^+ \in V_1 \)

and \(t^- \in V_1^\perp \). Therefore any isotropic vector

\(v \in V \) can be written as \(v = v^+ + v^- \)

but

\[
\begin{align*}
 h(w_1, w_2) &= 0 \\
 &= h(v^+ + v^-, \alpha_1 v^+ + \alpha_2 v^-) \\
 &= h(v^+, \alpha_1 v^+) + h(v^-, \alpha_2 v^-) + h(v^+, \alpha_2 v^-) + h(v^-, \alpha_1 v^+) \\
 &= \alpha_1 h(v^+, v^+) + \alpha_2 h(v^-, v^-)
\end{align*}
\]

where \(v^+ \in V_1 \) and \(v^- \in V_1^\perp \).

Notation 2.15. In the following lemmas \(E_i \) will be a nondegenerate subspace with \(\text{sign}(E_i) = (1,1,0) \).

Lemma 2.16. Given two orthogonal isotropic vectors \(w_1, w_2 \) where \(w_1 = v^+ + v^- \) and \(E_1 = \text{span}(v^+, v^-) \), then \(w_2 \in E_1^\perp \).

Proof. Firstly, since

\[
\begin{align*}
 h(v^+, v^-) &= -h(v^-, v^+).
\end{align*}
\]

so \(h(v^+, v^-) = -h(v^-, v^+) \).

Assume that \(w_2 \in E_1 \) then \(w_2 = \alpha_1 v^+ + \alpha_2 v^- \), \(\alpha_1, \alpha_2 \in \mathbb{C} - \{0\} \),

which implies that \(\alpha_1 = \alpha_2 \) and \(w_2 = \alpha_1 w_1 \) which is a contradiction.

Also if \(w_2 = a_1 v^+ + a_2 v^- \), \(\hat{v}^- \in E_1^\perp \),

or \(w_2 = a_1 \hat{v}^+ + a_2 v^- \), \(\hat{v}^+ \in E_1^\perp \),

then \(h(w_1, w_2) \neq 0 \).

Therefore \(w_2 \in E_1^\perp \).

Lemma 2.17. Let \(D \) be a degenerate subspace with dimension \(r \), there exist \(r \) subspaces \(E_1, E_2, \ldots, E_r \) such that

\[
E_i \cap E_j = \{0\} \quad 1 \leq i < j \leq r \quad \text{and} \quad D \subseteq E_1 \oplus E_2 \oplus \ldots \oplus E_r.
\]

Proof. We will prove it by induction.

Step 1: If \(\dim D = 1 \), then \(D = \text{span}(w_1) \) where \(w \) is an isotropic vector, so by Lemma 2.14 \(w_1 = v^+ + v^- \) where \(v^- \perp v^+ \) and \(D \subseteq E_1 = \text{span}(v^+, v^-) \).

Step 2: If \(\dim D = 2 \), then \(D = \text{span}(w_1, w_2) \) where \(h(w_1, w_2) = 0 \).

By step 1,

\[
W = \text{span}\{w_1\} \subseteq E_1
\]

and by Lemma 2.16 \(w_2 \in E_1^\perp \), then by Lemma 2.14 there exist \(v^+, \hat{v}^- \in E_1^\perp \) such that \(w_2 = v^+ + v^- \). So we have a nondegenerate subspace \(E_2 = \text{span}(v^+, v^-) \) where \(v_2 \in E_2 \) and \(E_1 \cap E_2 = \{0\} \), then

\[
D \subseteq E_1 \oplus E_2.
\]

Step 3: Assume that the lemma is true if \(\dim D < r \).

Step 4: If \(\dim D = r \).

Choose any vector \(w \) in \(D \), then \(D = \text{span}(w) \oplus \hat{v}^- \) where \(D^- \) is the orthogonal complement of \(\text{span}(w) \) in \(D \), So \(D^- \) is a subgroup of \(D \) with \(\dim D^- = r - 1 \) and by step 3 there exist \(E_1, E_2, \ldots, E_{r-1} \) such that

\[
E_i \cap E_j = \{0\} \quad 1 \leq i < j \leq r - 1 \quad \text{and} \quad D^- \subseteq E_1 \oplus E_2 \oplus \ldots \oplus E_{r-1}.
\]

By Lemma 2.16, \(w \in E_i^\perp \quad \forall i \), so
$w \in (E_1 \oplus E_2 \oplus \ldots \oplus E_r)^\perp$

again by step 1, $w = v^+ + v^-$ where $v^+ \perp v^-$ and

$\text{span}(w) \subseteq E_r = \text{span}(v^+, v^-)$.

Since $D = \text{span}(w) \oplus D^\perp$, then

$D \subseteq E_1 \oplus E_2 \oplus \ldots \oplus E_r$.

Proposition 2.18. Given $Y_1, Y_2 \in \text{Gr}(r,n)$

be degenerate subspaces, i.e.

$\text{sign}(Y_1) = \text{sign}(Y_2) = (0,0,r)$,

then there exist $g \in \text{SU}(p,q)$ with $g(Y_1) = Y_2$

Proof. Assume we have two degenerate

subspaces Y_1, Y_2. By Lemma 2.17 there

exist r subspaces

E_1, E_2, \ldots, E_r

such that $E_i \cap E_j = \{0\}$, $1 \leq i < j \leq r$, and

$Y_1 \subseteq E_1 \oplus E_2 \oplus \ldots \oplus E_r$

where $E_i = \text{span}(v^+_i, v^-_i)$, then we have 2r

orthogonal vectors of V,

$\beta_1 = \{v^+_1, v^-_1, \ldots, v^+_r, v^-_r\}$.

it, namely β_2, where it has $(p - r)$ positive vectors and

$(q - r)$ negative vectors. We can rearrange the vectors

in β_1 to have the positive vectors firstly, i.e.

$\hat{\beta}_2 = \{u^+_1, u^-_1, \ldots, u^+_r, u^-_r\}$.

Finally, we can define a linear map

$g : V \to V$ by $g(v^+_i) = u^+_i, \ g(v^-_i) = u^-_i, \forall i$,

then $g(Y_1) = Y_2$, and by using the same method we use

in the proof of Proposition 2.12

$h(g(w_1), g(w_2)) = h(w_1, w_2)$.

Therefore $g \in \text{SU}(p,q)$.

Example 2.19. Let $G = \text{SU}(1,2)$ and define the subspaces

$Y_1 = \text{span}(e_1 + e_3)$ and $Y_2 = \text{span}(e_1 + e_2)$. The signature

$\text{sign}(Y_1) = \text{sign}(Y_2) = (0,0,1)$. Choose the matrix $g \in \text{SU}(1,2)$ where

$$g = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$
such that \(g.e_1 = e_1 \) and \(g.e_3 = e_2 \), which means that \(g.Y_1 = Y_2 \).

2.4 General Result

In this section we will prove our main theorem.

Theorem 2.20. The \(SU(p,q) \)-orbit in \(Gr(r,n) \) are parameterized by signature. That is given \(W_1, W_2 \in Gr(r,n) \) there exist \(g \in SU(p,q) \) with \(g(W_1) = W_2 \) if and only if \(\text{sign}(W_1) = \text{sign}(W_2) \).

Proof. Let \(W_1, W_2 \in Gr(r,n) \), then

\[
W_1 = Q_1 \oplus B_1 \quad \text{and} \quad W_2 = Q_2 \oplus B_2
\]

where \(Q_1, Q_2 \) are nondegenerate subspaces and

\[
B_1 = W_1 \cap W_1^\perp \quad \text{and} \quad B_2 = W_2 \cap W_2^\perp.
\]

By Proposition 2.12, there exist \(g \in SU(p,q) \) such that

\[
g(Q_1) = Q_2 \quad \text{and} \quad g(Q_1^\perp) = Q_2^\perp.
\]

But \(g(B_1) = \tilde{B}_1 \subseteq Q_2^\perp \), by Proposition 2.18 there exist \(\tilde{g} \in SU(p,q) \) such that \(\tilde{g}(B_1) = B_2 \). So we can define our map \(\psi : V \rightarrow V \) as

\[
\psi = (Id \oplus \tilde{g}^*) \circ g,
\]

where \(Id \) is the identity matrix, then

\[
\psi(W_1) = W_2.
\]

Since \(Id, g, g^* \) are all in \(SU(p,q) \), then \(\psi \in SU(p,q) \).

2. THE PARAMETRIZATION OF

SO(\(P,Q \))-ORBITS IN

ISOTROPIC GRASSMANNIAN \(Z_k \)

In this section we will prove that \(SO(p,q) \)-orbits in \(Z_k \) are parameterized by signature, where \(Z_k \) is the isotropic Grassmannian.

Consider the semisimple Lie group \(G = SO(n,C) \) where \(G_0 = SO(p,q) \), with complex bilinear form defined by

\[
b(v, w) = - \sum_{i=1}^{p} v_i w_i + \sum_{i=p+1}^{n} v_i w_i
\]

then the Hermitian form which defines the real form is

\[
h(v, w) = b(v, \bar{w})
\]

\(\), so \(G_0 \) is the subgroup of operators \(T \) in \(G \) satisfy \(T = \bar{T} \).

Let \((V, h) \) be the complex nondegenerate vector space of signature \((p,q) \). Define \(Z_k \) to be the isotropic Grassmannian which is the set of all-isotropic \(k \)-planes in \(C^n \) where

\[
1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor.
\]

Consider the action of the real form \(SO(p,q) \) on the flag manifold \(Z_k \)

\[
SO(p,q) \times Z_k \rightarrow Z_k
\]

then \(SO(p,q) \) has a unique closed orbit and finitely many open orbits on \(Z_k \). In the following sections we will proof that the orbits of this action parameterized by signature.
3.1 Orbit structure

In this sections we will prove that the $SO(p,q)$-orbits in Z_d are parameterized by signature $\text{sign}(W) = (n^*, n^-, d, r)$ by using our previous results about $SU(p,q)$.

Definition 3.1. Given a subspace $(W, h | W)$ of (V, h), We define a signature of W to be $\text{sign}(W) = (n^*, n^-, d, r)$ where n^* is the dimension of maximal positive subspace of W and n^- is the dimension of maximal negative subspace of W and

$$d = \dim(W \cap W^\perp) = \dim(W^\perp h | W)$$

and $r = \dim(W \cap W)$.

We used this signature to parameterize the $SO(p,q)$ orbits while $SU(p,q)$ orbits parameterized by only (n^*, n^-, d).

Remark 3.2. Given a non degenerate space with orthogonal basis θ, then we can write V as $V = W^* \oplus W^\perp$ where W^* is a maximal positive subspace of V generated by positive vectors in θ, and W^\perp is a maximal negative subspace of V generated by negative vectors of θ. We can extend each of these bases to get bases for W^*, W^\perp, D respectively. We can define a basis of $(W, h | W)$, namely an ideal basis, to be as following:

Definition 3.3. A subspace W is said to be of maximal reality if $W = W^*$ and $W = W_k \oplus W_k$ where $W_k \subset R$.

Lemma 3.4. Any subspace of maximal reality has a real basis.

Proof. Given a subspace X of maximal reality then $X = X'$, i.e., $X = X_k \oplus X_k$ where X_k is a real subspace, so the basis of X_k is basis of X but the basis of X_k is real that mean we can find a real basis θ for X where $u = u \forall u \in \theta$.

If $(W, h | W)$ is of signature $\text{sign}(W) = (n^*, n^-, d, r)$, then $W = W^* \oplus W^\perp \oplus D$ where W^* is a maximal positive subspace with $\dim W^* = n^*$, W is a maximal negative subspace with $\dim W^\perp = n^-$ and $D = W \cap W^\perp$ with $\dim D = d$. In this cases $W^+ \cap W^\perp$, and $W^- \cap W^\perp$ and $D \cap D$ all of them have real bases θ_1, θ_2 and θ_3 respectively. We can extend each of these bases to get bases for W^*, W^\perp, D respectively. So we can define a basis of $(W, h | W)$, namely an ideal basis, to be as following:

Definition 3.5. Given a k-subspace $(W, h | W)$ of signature $\text{sign}(W) = (n^*, n^-, d, r)$ where $\dim W = n^* + n^- + d = k$. A set $\theta = \{v_1, \ldots, v_n\}$ is an ideal basis of $(W, h | W)$ if:

1. v_1, \ldots, v_n are orthonormal positive vectors with r_1 vectors of them are real.
2. v_{n+1}, \ldots, v_{n+k} are orthonormal negative vectors with r_2 vectors of them are real.
3. v_{n+k+1}, \ldots, v_k are linearly independent vectors with r_3 vectors of them are real.
4. $r_1 + r_2 + r_3 = r$ and we will define the signature of this basis to be (n^*, n^-, d, r).

Example 3.6. Let $G = SU(2,3)$ with the hermaition form h defined as

$$h(v, w) = b(v, \sigma(w)) = -\sum_{i=1}^{2} v_i \sigma(w_i) + \sum_{i=3}^{5} v_i \sigma(w_i).$$

Define the subspaces $W = \text{span}\{e_1, e_2, e_3 + ie_4\}$ with signature $\text{sign}(W) = (2, 1, 1, 3)$. The basis $\{e_1, e_2, e_3 + ie_4\}$ is called ideal basis since $h(e_1, e_1) = -1$ and $h(e_2, e_2) = h(e_3, e_3) = 1$ and $h(e_2 + ie_4, e_2 + ie_4) = 0$

and this basis has the same signature as the subspace W.

Lemma 3.7. If $W \in Z_d$, then $W \cap W^\perp \subset W \cap W^\perp$.

24 IUG Journal of Natural Studies (Islamic University of Gaza) / CC BY 4.0
Proof. If \(v \in W \cap W \), then \(v \in \tilde{W} \cap W \) and

\[h(v, \tilde{v}) = 0 = h(v, v), \]

so \(v \in W \cap W^\perp \). Therefore, \(W \cap \tilde{W} \subset W \cap W^\perp \).

Theorem 3.8. The \(SO(p,q) \)-orbits in \(Z_k \) are parameterized by signature \((n^+, n^-, d, r)\), i.e., given \(Y_1, Y_2 \in Z_k \) there exist \(g \in SO(p,q) \) with \(g(Y_1) = Y_2 \) if and only if

\[\text{sign}(Y_1) = \text{sign}(Y_2). \]

Proof. Given \(Y_1, Y_2 \in Z_k \) such that

\[\text{sign}(Y_1) = \text{sign}(Y_2) = (n^+, n^-, d, r), \]

then

\[\dim(Y_1 \cap Y_1^\perp) = \dim(Y_2 \cap Y_2^\perp) = r. \]

Let \(\theta_1 \) be the real basis of \(Y_1 \cap Y_1^\perp \) and \(\theta_2 \) be the real basis of \(Y_2 \cap Y_2^\perp \), then

\[u_i = u_i^+ + u_i^- \]

and by using the same procedure in the proof of Proposition 2.18 we can define \(T \) as

\[T(u_i^+) = v_i^+ \text{ and } T(u_i^-) = v_i^-, \]

and then extend \(T \) by defining it in the other vectors similarly as in Theorem 2.20. This implies that

\[T(Y_1) = Y_2 \text{ and } T(Y_1 \cap Y_1^\perp) = Y_2 \cap Y_2^\perp. \]

If \(F_1 = Y_1 \cap Y_1^\perp \) and \(F_2 = Y_2 \cap Y_2^\perp \), then \(F_1 = \overline{F_1} \) and \(F_2 = \overline{F_2} \), which implies that

\[T(F_1) = F_2 = \overline{F_2} = \overline{T(F_1)} = \overline{T(F_1)} = T(F_1). \]

Therefore \(T(F_1) = \overline{T(F_1)} \) if and only if \(T = \overline{T} \). Hence \(T \in SO(p,q) \).

3.2 The closed \(SO(p,q) \)-Orbit in \(Z_k \)

In this section we will describe the signature of the closed \(SO(p,q) \)-Orbit in \(Z_k \) with a comparison between this closed orbit and the closed \(SU(p,q) \)-orbit.

Proposition 3.9. The closed \(SO(p,q) \)-orbit in \(Z_k \) is the set of all degenerate subspaces with maximal reality. i.e. with signature \((0,0,k)\).

Proof. By theorem 3.8 \(SO(p,q) \) acts transitively on this set.

Define \(Z^d \) to be the set of all subspaces of maximal reality in \(Z_k \). Let \(T \) be the closed \(SU(p,q) \)-orbit in \(Z \), then the set \(\tilde{T} = T \cap Z^d \) is closed in \(Z^d \). If \(O \) is the set of all degenerate subspaces with maximal reality then \(O = \tilde{T} \cap Z_k \), so \(O \) is closed in \(Z_k \).

3.3 Open \(SO(p,q) \)-Orbits in \(Z_k \)

In this section we will describe the signature of open \(SO(p,q) \)-Orbits in \(Z_k \) with a comparison between this open orbits and open \(SU(p,q) \)-orbits.

Proposition 3.10. Open \(SO(p,q) \)-orbits in \(Z_k \) are parametrized by the signature \((n^+, n^-, 0, 0)\).

Proof. Let \(D^\sim \) be an open \(SU(p,q) \)-orbit in \(Z \), then the set \(D = D^\sim \cap Z_k \) is open in \(Z_k \), and by Lemma 3.7

\[D = D^\sim \cap Z_k \]

is the set of all nondegenerate subspaces of minimal reality \((r = 0)\), i.e of signature \((n^+, n^-, 0, 0)\).

Theorem 3.11. Each \(SU(p,q) \) open orbit contains a unique \(SO(p,q) \) open orbit.

Proof. By the proof of Proposition 3.10 if \(D^\sim \) is open orbit of \(SU(p,q) \) then \(D = D^\sim \cap Z_k \) is open of \(SO(p,q) \) in \(Z_k \).
Remark 3.12. Each $SU(p,q)$ open orbit has a nonempty intersection with Z_k.

3.4 Examples

Example 3.13. Let $Z = P_0((C))$ then $Z_1 = \{ x \in P_0(C) : -x^2 + \sum_{i=3}^6 x_i^2 = 0 \}$. Consider the action of $SO(3,4)$ on Z_1, then the open orbit of $SO(3,4)$ on Z_1 is

$$Z_k\cap P_0(\mathbb{R}) := \{ x \in P_0(\mathbb{R}) : h(x,x) = b(x,x) = 0 \}$$

and open orbits of $SO(3,4)$ in Z_1 are

$$D_1 = SO(3,4).(e_1 - ie_2) \subset D^+$$

where D^+ is an open orbit of $SU(3,4)$ on Z.

$$D_2 = SO(3,4).(e_4 - ie_5) \subset D^-$$

where D^- is an open orbit of $SU(3,4)$ on Z.

Example 3.14. Let $Z = Gr(2,7)$, then $Z_2 = \{ x \in Gr(2,7) : x = b - isotropic \}$. Consider the action of $SO(3,4)$ on Z_2, then the open orbit of $SO(3,4)$ on Z_2 is

$$O := \{ x \in Gr(2,7) : x = a degenerate b-isotropic subspace \}$$

and open orbits of $SO(3,4)$ in Z_2 are

$$D_{1,1} = SO(3,4).<e_1-ie_2,e_4-ie_5> \subset \tilde{D}_{1,1}$$

where $\tilde{D}_{1,1}$ is an open orbit of $SU(3,4)$ on Z.

$$D_{0,2} = SO(3,4).<(e_4-ie_5),(e_6-ie_7) \subset \tilde{D}_{0,2}$$

where $\tilde{D}_{0,2}$ is an open orbit of $SU(3,4)$ on Z.

CONCLUSION

The signature of the subspaces plays an important role of parametrization the G_0-orbits. In this paper we proved that the G_0-orbits are parametrized by the signature of the subspaces in the orbit where $G_0 = SU(p,q)$ and $G_0 = SO(p,q)$. In the future studies, we can use this parametrization to understand the geometry of the Grassmannian spaces and any flag manifold.

REFERENCES

الملخص:

تعرف المجموعة G على أنها إحدى مجموعات لي الكلاسيكية المركبة بحيث يرمز G_0 للمجموعة الحقيقية للGrupo. ليكن الفراغ G/P هو فراغ جزئي على الفراغ G_0. بالنسبة للجبرية من الفراغ $Gr(k,n)$، فإن هذه المجموعة تقسم الفراغ G_0 إلى مجموعة من الفراغات الخضر من الفراغ $Gr(k,n)$، ثم تقسم الفراغ G_0 إلى مجموعة من الفراغات الخضر من الفراغ $Gr(k,n)$ وتجميع الفراغات الخضر من الفراغ $Gr(k,n)$ للفضاء من الفراغات الخضر من الفراغ $Gr(k,n)$. هذه المجموعة يتم تصنيفها بواسطة الهدف المحدد O بناءً على فضاء المتجهات الرئيسية للنموذج $SP(2,p,2q)$ و $SO(p,q)$ لكل من المجموعات هيئتيO.