On Fredholm Theory In a Banach

Algebra of Operators

Ahmad M. AL – Zeir, Dr. Buthainah A. H. Ahmed, Dr. Sakin A. Fathy
University of Baghdad, College of Science, Department of Mathematics.

Introduction
Let \(B(X) \) be the Banach algebra of all bounded linear operators on the infinite dimensional Banach space \(X \).
We say that two infinite dimensional Banach spaces \(X \) and \(Y \) form a dual system, denoted \((X,Y) \), if there is defined on \(X \times Y \) a nondegenerated bounded bilinear form \(< \, , \, > \) [6, P. 6].
Let \(T \in B(x) \), if there exists \(T^* \in B(Y) \) such that
\[
<Tx, y> = <x, T^* y>
\]
for all \(x \in X \) and \(y \in Y \), then \(T^* \) is called a conjugate operator to \(T \) relative to the dual system \((X,Y)\). [4, p. 44]
Let \(A(X,Y) \) be the algebra of all \(T \in B(X) \) that have, with respect to the dual system \((X,Y)\), a conjugate \(T^* \in B(Y) \). \(A(X,Y) \) is a Banach algebra with respect to the normal given by
\[
\|T\|_4 = \max \{\|T\|,\|T^*\|\}, \quad [4, \text{P. 45}]
\]
An operator \(T \) in \(B(X) \) is called a Fredholm operator if both \(\alpha(T) \) and \(\beta(T) \) are finite, Where \(\alpha(T) \) denotes the dimension of the null space of \(T \), \(\dim N(T) \), and \(\beta(T) \) denotes the codimension of the image of \(T \), \(\text{codim } R(T) \) [2, P. 3]
In this paper we study the connection between some properties of operators \(T \in A(X,Y) \) and their conjugates \(T^* \). For example we show that if \(T \) is an operator in \(A(X,Y) \), such that the dimension of the null space of \(T \) is finite or the codimension of the image of \(T^* \) is finite, then \(R(T^*) = N(T)^\perp \) and \(\beta(T^*) = \alpha(T) \) are equivalent. We also prove that if the codimension of the image of \(T \) is finite, then the dimension of the null space of the conjugate operator \(T^* \) is also finite and in fact, is less or equal it.
Now let \(\Phi(X) \) be the set of all Fredholm operators in \(B(X) \), and for any \(T \) in \(\Phi(X) \), the index \(\text{ind}(T) \), is defined by the formula
\[
\text{ind}(T) = \alpha(T) - \beta(T)
\]
On Fredholm Theory In a Banach...

let $\mathcal{D}_\theta(X)$ be the set of all Fredholm operators of index zero and $F(X)$ be the set of all finite rank operators.

Also let \mathcal{M} be the subspace generated or spanned by a non-empty subset M of X.

§ 1. Fredholm Operators in $B(X)$.

In this section we study the connection between the properties of operators T and their conjugates $T^*.$

First we give the following general proposition which appeared in [7, P. 99] for the particular case of the dual system (X,X') where X' is the dual space of X and (X,X') the dual system with bilinear form defined by $<x,x'> = x'(x)$.

Proposition (1.1)

Let $T \in A(X,Y)$, then we have

1. $R(T)^\bot = N(T^*)$
2. $N(T^*) = N(T^*)^\bot\bot$
3. $R(T^*)^\bot = N(T)$
4. $N(T) = N(T)^\bot\bot$

Proof:

1. $y \in N(T^*) \iff T^*y = 0 \iff <x,T^*y> = 0$ for all $x \in X$
2. $\iff <Tx,y> = 0$ for all $x \in X$

$\iff y \in R(T)^\bot$

(2) From part (1), it follows that

$N(T^*)^\bot\bot = (R(T)^\bot)^\bot = R(T)^\bot = N(T^*)$

In similar way, we can prove (3) and (4). □

Form the previous proposition, we Conclude the following:

Corollary (1.2)

Let $T \in A(X,Y)$, if T (or T^*) is surjective, then T^* (or T) is injective.

Also we need the following two lemmas which are known.

Lemma (1.3)

Assume $T \in A(X,Y)$

1. If $x_1,x_2,...,x_n$ are elements in $N(T)$ and $y_1,y_2,...,y_n$ are elements in Y such that $<x_i,y_k> = \delta_{ik}$ for $i, k = 1,2,...,n$ then $\{y_1,y_2,...,y_n\} \cap R(T^*) = \{0\}$
2. If $w_1,...,w_n$ are elements in $N(T^*)$ and if $z_1,...,z_n$ are elements in X such that $<z_i,w_k> = \delta_{ik}$ for $i, k = 1,...,n$ then $\{z_1,...,z_n\} \cap R(T) = \{0\}$

lemma (1.4)
If E and F are subspaces of a vector space V whose intersection is trivial, then E has a complementary space that contains F.

Now we can state one of our main results.

Theorem (1.5)

Let $T \in A(X,Y)$

1. If $\alpha(T) < \infty$ then $R(T^*) = N(T)^\perp$ iff $\beta(T^*) = \alpha(T)$
2. If $\alpha(T^*) < \infty$ then $R(T) = N(T^*)$ iff $\beta(T) = \alpha(T^*)$

proof

$(1) \Rightarrow$ If $\alpha(T) = 0$, then it is clear that $\beta(T^*) = \alpha(T)$. Now, assume that $\alpha(T) = n > 0$ and $\{x_1, \ldots, x_n\}$ is a basis of $N(T)$, there exist n linearly independent elements y_1, y_2, \ldots, y_n in Y such that $<x_i, y_k> = \delta_{ik}$ for $i, k = 1, \ldots, n$ [5, P. 18], [6, P. 63]. So $\{y_1, \ldots, y_n\} \cap R(T^*) = \{0\}$ [lemma 1.3].

For every y in Y, we define

$$w_y = y - \sum_{i=1}^{n} <x_i, y> y_i$$

so

$$<x_k, w_y> = <x_k, y> - \sum_{i=1}^{n} <x_i, y> <x_k, y_i> = 0$$

for all $k, 1 \leq k \leq n$

this implies that $w_y \in N(T)^\perp$ so $w_y \in R(T^*)$

Hence, every $y \in Y$ can be represented in the form

$$y = \alpha_1 y_1 + \ldots + \alpha_n y_n + w_y$$

so $w_y \in R(T^*)$ and $\alpha_i = <x_i, y>$

Therefore, $\{y_1, \ldots, y_n\} \oplus R(T^*) = Y$ and so

$\text{codim } R(T^*) = n = \text{dim } N(T)$ that is $\beta(T^*) = \alpha(T)$

(\Leftarrow) Clearly, $R(T^*) \subset N(T)^\perp$ [3, P. 90, P. 134]. To prove that $N(T)^\perp \subset R(T^*)$, if $\alpha(T) = 0$, then $N(T) = 0$ implies that $N(T)^\perp = Y$ and hence $R(T^*) = N(T)^\perp$. Assume that $\alpha(T) = n > 0$ and $\{x_1, \ldots, x_n\}$ is a basis for $N(T)$ [5, P. 18] [6, P. 63].

There exist n linearly independent elements y_1, \ldots, y_n in Y such that $<x_i, y_k> = \delta_{ik}$ for $i, k = 1, \ldots, n$

so $\{y_1, \ldots, y_n\} \cap R(T^*) = \{0\}$ [lemma 1.3] and $R(T^*)$ has a complementary space that contains $\{y_1, \ldots, y_n\}$ since
On Fredholm Theory In a Banach..

\[\text{dim} \{ y_1, \ldots, y_n \} = n = \alpha(T) = \beta(T^+) \]

hence

\[Y = \{ y_1, \ldots, y_n \} \oplus R(T^+) \]

Now, if \(y \in N(T) \perp \subseteq Y \), then

\[y = \alpha_1 y_1 + \ldots + \alpha_n y_n + T^* w \quad \alpha_i \in \mathbb{C}, w \in Y \quad \text{since for all } k, \]

\[1 \leq k \leq n, \text{ we have} \]

\[\theta = \langle x_k, y \rangle = \sum \alpha_i \langle x_k, y_i \rangle + \langle x_k, T^* w \rangle = \alpha_k + \langle T x_k, w \rangle = \alpha_k \]

hence \(y = T^* w \), i. e. \(y \in R(T^+) \), thus \(N(T) \perp \subseteq R(T^+) \)

therefore \(R(T^+) = N(T) \perp \).

(2) Assume \(T \in A(X, Y) \) and \(\alpha(T^+) < \infty \), then \(T^* \in A(Y, X) \) and

\(T \) is the conjugate operator to \(T^* \) and since \(\alpha(T^+) < \infty \), then by part one

\(R(T) = N(T^+) \) and \(\beta(T) = \alpha(T^+) \) are equivalent. \(\square \)

Now, suppose \(T \in A(X, Y) \). In the following theorem we show that if the codimension of the image of \(T \) is finite then the dimension of the null space of the conjugate operator \(T^* \) to \(T \) is also finite.

Theorem (1.6)

Let \(T \in A(X, Y) \)

(1) If \(\beta(T) < \infty \), then \(\alpha(T^+) < \infty \). In particular \(\alpha(T^+) \leq \beta(T) \).

(2) If \(\beta(T^+) < \infty \), then \(\alpha(T) < \infty \). In particular \(\alpha(T) \leq \beta(T^+) \).

Proof:

(1) If \(\beta(T) = 0 \), then \(R(T) = X \) this implies that the conjugate operator

\(T^* \) to \(T \) is injective [Corollary 1.2] so \(\alpha(T^+) = 0 \).

Now we may assume that \(\beta(T) = m > 0 \), and assume the contrary, that

\(N(T^+) \) is infinite dimensional, therefore one can choose \(n \) linearly

independent elements \(y_1, \ldots, y_n \) in \(N(T^+) \) such that \(n > m \).

There exist \(n \) linearly independent elements \(x_1, \ldots, x_n \) in \(X \) such that

\[\langle x_i, y_k \rangle = \delta_{ik} \quad i, k = 1, 2, \ldots, n \]

then \(\{ x_1, \ldots, x_n \} \cap R(T) = \{ 0 \} \) (lemma 1.3).

Since \(R(T) \) has a complementary space which contains \(\{ x_1, x_2, \ldots, x_n \} \), then

\[n = \text{dim} \{ x_1, \ldots, x_n \} \leq \text{codim} R(T) = \beta(T) = m \]

and this is contradiction.
Thus $\alpha(T^*)$ must be finite and also $\alpha(T^*) \leq \beta(T)$.

2. Since $T \in A(X,Y)$ then $T^+ \in A(Y,X)$ and since $\beta(T^+) < \infty$, therefore by part (1) $\alpha(T) \leq \beta(T^+)$. \(\square\)

Using this theorem we have the following Corollary

Corollary (1.7)

Let $T \in A(X,Y)$, if $\beta(T)$ and $\beta(T^+)$ are finite, then $T \in \Phi(X)$ and $T^+ \in \Phi(Y)$.

Form our preceding theorems (1.5) and (1.6), we obtain directly the following result.

Corollary (1.8)

Let $T \in A(X,Y)$, then

1. If $\beta(T) < \infty$, then $R(T) = N(T^+)\perp$ if and only if $\beta(T) = \alpha(T^+)$.
2. If $\beta(T^+) < \infty$, then $R(T^+) = N(T)\perp$ if and only if $\beta(T^+) = \alpha(T)$.

It was proved in [4, P. 111] that if $T \in \Phi(X), T^+ \in \Phi(Y)$ and $\text{ind}(T) = -\text{ind}(T^+)$ then $R(T) = N(T^+)\perp$, $R(T^+) = N(T)\perp$.

\begin{align*}
\beta(T) &= \alpha(T^+) \quad \text{and} \quad \beta(T^+) = \alpha(T)
\end{align*}

We prove a stronger result as follows

Theorem (1.9)

Let $T \in A(X,Y), T^+ \in \Phi(Y)$, then the following statements are equivalent:

1. $R(T) = N(T^+) \quad$ and $\quad R(T^+) = N(T)$
2. $\beta(T) = \alpha(T^+) \quad$ and $\quad \beta(T^+) = \alpha(T)$
3. $\text{ind}(T) = -\text{ind}(T^+)$

Proof:

1. $(1) \iff (2)$ follows from Theorem (1.4)

2. $(2) \implies (3)$ trivial.

3. $(3) \implies (2)$ since $\beta(T)$ and $\beta(T^+)$ are finite, by Theorem (1.6),

\begin{align*}
\alpha(T^+) \leq \beta(T) \quad\text{and}\quad \alpha(T) \leq \beta(T^+)
\end{align*}

then

\begin{align*}
\text{ind}(T) &= \alpha(T) - \beta(T) \leq \beta(T^+) - \alpha(T^+) = -\text{ind}(T^+) = \text{ind}(T)
\end{align*}

Therefore, $\alpha(T) - \beta(T) = \beta(T^+) - \alpha(T^+)$. Thus $\alpha(T) = \beta(T^+)$, and $\alpha(T^+) = \beta(T)$.

From the previous theorem, we have the following corollary.

Corollary (1.10)
On Fredholm Theory In a Banach..

Assume \(T \in A(X,Y) \), \(T \in \Phi^0(X), T^* \in \Phi^0(Y) \), then \(T \) and \(T^* \) are bijective if and only if one of them is injective or surjective. Let \(T \in A(X,Y) \), Jorgens in \([4, P. 111]\) proved that if \(T \in \Phi(X), T^* \in \Phi(Y) \), and \(\text{ind}(T) = -\text{ind}(T^*) \), then there exist projections \(P \) and \(Q \) in \(F(A) = A(X,Y) \cap F(X) \) such that \(R(P) = N(T) \) \(N(P^*) = R(T^*) \) \(R(Q) = R(T) \) \(R(Q^*) = N(T^*) \) In fact, we can say more than this

Theorem (1.11)

Let \(T \in A(X,Y) \). Then the following are equivalent:

1. \(T \in \Phi(X), T^* \in \Phi(Y) \), and \(\text{ind}(T) = -\text{ind}(T^*) \)
2. There exist projections \(P \) and \(Q \) in \(F(A) \) such that \(R(P) = N(T) \) \(N(P^*) = R(T^*) \) \(R(Q) = R(T) \) \(R(Q^*) = N(T^*) \)

Proof

(1) \(\Rightarrow \) (2)

Let \(\{x_1, \ldots, x_n\} \) be a basis of \(N(T) \), then there exist \(n \) linearly independent elements \(y_1, \ldots, y_n \) in \(y \) such that \(<x_i, y_k> = \delta_{ik} \) \(i, k = 1, \ldots, n \) \([5, P. 18]\) \([6, P. 63]\)

Define \(P \) by \(P = \sum_{i=1}^{n} <x_i, y_k> x_i \). \([4, p. 47]\)

So \(P \in F(A) \), and since for all \(k \), \(1 \leq k \leq n, Px_k = x_k \), \(P \) is a projection and \(R(P) = \{x_1, \ldots, x_n\} = N(T) \). Clearly, the conjugate operator \(P^* \) to \(P \) is given by \(P^* y = \sum_{i=1}^{n} <x_i, y> y_i \), thus \(N(P^*) = \{y \in Y : <x_i, y> = 0 \} \) for all \(i, 1 \leq i \leq n \) \(= \{ y \in Y : <x_i, y> = 0 \} \) for all \(x \in N(T) \) \(= N(T)^\perp \) but \(R(T^+) = N(T^+)^\perp \) [Theorem 1.9], hence \(N(P^*) = R(T^+) \).

We can define the projection \(Q \) in \(F(A) \) by \(Q = \sum_{i=1}^{n} <x_i, w_i> z_i \)

50
With \(w_1, \ldots, w_n \) form a basis of \(N(T^*) \) and \(z_1, \ldots, z_n \) linearly independent elements in \(X \) such that \(< z_i, w_k > = \delta_{ik} \).

In a similar way and with the aid of \(R(T) = N(T^*)^\perp \) we can show that
\[
N(Q) = R(T) \quad R(Q^*) = N(T^*)
\]

\((2) \Rightarrow (1)\)

To prove that \(T \in \Phi(X) \), it follows from \(P \in F(X) \) that \(\dim R(P) < \infty \) and since \(R(P) = N(T) \), so \(\alpha(T) < \infty \). Since \(Q \) is a projection and \(N(Q) = R(T) \), this implies that \(R(Q) \) is a Complementary space to \(R(T) \) and since \(Q \in F(X) \), then \(\dim R(Q) < \infty \) and so \(\beta(T) < \infty \). Now, we show that \(T^* \in \Phi(Y) \).

Since \(P \) and \(Q \) are projections of finite rank, we can easily show that \(P^* \) and \(Q^* \) are also projections of finite rank, therefore,
\[
\alpha(T^*) = \dim N(T^*) = \dim R(Q^*) < \infty \quad \text{and by} \quad N(P^*) = R(T^*)
\]
\[
\beta(T^*) = \text{codim } R(T^*) = \dim R(P^*) < \infty.
\]

It remains to prove that \(\text{ind}(T) = -\text{ind}(T^*) \). For this, we show that \(\alpha(T^*) = \beta(T) \). By hypothesis, there exists a projection \(Q \) in \(F(A) \) such that \(N(Q) = R(T) \) and \(R(Q^*) = N(T^*) \), by [4, P.47] \(Q \) can be represented in the form \(Qx = \sum_{i=1}^{n} < x, y_i > x_i \),

where \(x_1, \ldots, x_n \) are linearly independent in \(X \) and \(y_1, y_2, \ldots, y_n \) are linearly independent in \(Y \). By [3, P. 125 \(R(Q) = \{ x_1, \ldots, x_n \} \). and since \(N(Q) = R(T) \), therefore \(X = \{ x_1, \ldots, x_n \} \oplus R(T) \) and so \(\beta(T) = n \).

Now, since \(R(T) = N(Q) = \{ z \in X : < z, y_k > = 0, k = 1, \ldots, n \} \), then for all \(k, l \leq k \leq n, 0 = < T_x, y_k > = < x, T^* y_k > \) for all \(x \in X \) and since \((X, Y) \) is a dual system, then \(T^* y_k = 0 \) for all \(k, l \leq k \leq n \), that is \(y_k \in N(T^*) \) which are linearly independent in \(N(T^*) \), therefore \(n \leq \dim(N^*) \) and so \(\beta(T) \leq \alpha(T^*) \). Since \(\beta(T) \leq \infty \) then \(\alpha(T^*) \leq \beta(T) \) [Theorem 1.6]. Hence \(\alpha(T^*) = \beta(T) \). Similarly, with the aid of the projection \(P, \alpha(T) \leq \beta(T^*) \). Thus
\[
\text{ind}(T) = \alpha(T) - \beta(T) = \beta(T^*) - \alpha(T^*) = -\text{ind}(T^*)
\]
On Fredholm Theory In a Banach..

References