Some Properties of Centralizing in a Unital Complex Banach Algebra

As‘ad Y. As‘ad Department of Mathematics, Islamic University of Gaza
B.O Box : 108 , E-mail: aasad@mail.iugaza.edu

بعض خواص المركزيَّة في جبر باخ العقدي

ملخص: في هذا البحث تم بحث أنَّ إذا كان J هو مثلي معقل لجبر باخ الوحدات العقدي وأنَّ a هي عضو في J، و b عضو في J فإنَّ ab = ba، و ab = ba عندنا خليلاً على بعضهما البعض إذا وفقط إذا كانت ab = ba.

Abstract In this paper we show that, for a closed ideal J of a unital complexBanach algebra A, if a is a quasi centralizing element of J and b belongs to J, then ab and ba are linearly dependent if and only if ab = ba. Also we get generalizations of some of Rennison's results.

1. Introduction

In this paper we study some properties of centralizing in a unital complex Banach algebra, where we generalize some results related to centrality in a unital complex Banach algebra that was obtained by Rennison in [7] and Sarsour and As‘ad in [8].

Throughout this paper all linear spaces and algebras are assumed to be defined over \(\mathbb{C} \), the field of complex numbers.

Let A be any complex normed algebra, then we denote the center of A by
\[Z(A) = \{ a \in A : ax = xa \text{ for all } x \in A \}, \]
and the centralizer of a subset B of A by \(C(B) = \{ a \in A : ax = xa \text{ for all } x \in B \} \). For a \(a \in A \), the spectrum in A of \(a \) will be denoted by \(\sigma_a(a) \) and the resolvent set, its complement in \(\mathbb{C} \), will be denoted by \(\rho_A(a) \).

In [6] Rennison defined the set of all quasi central elements in a complex Banach algebra A by \(Q(A) = \bigcup_{k \in \mathbb{C}} Q(k, A) \), where
\[Q(k, A) = \{ a \in A : \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \text{ for all } x \in A \text{ and all } \lambda \in \mathbb{C} \}. \]
Also he defined the set of all \(\sigma \)-quasi central elements in A by \(Q_\sigma(A) = \bigcup_{k \in \mathbb{C}} Q_\sigma(k, A) \), where
\[Q_\sigma(k, A) = \{ a \in A : \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \text{ for all } x \in A \text{ and all } \lambda \in \rho_A(a) \}. \]

In [5] the set of all \(\rho \)-quasi central elements in A was defined by
\[Q_\rho(A) = \bigcup_{k \in \mathbb{C}} Q_\rho(k, A), \] where \(Q_\rho(k, A) = \{ a \in A : \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \text{ for all } x \in A \text{ and all } \lambda \in \sigma_A(a) \}. \]
Similarly in [1] the following three concepts were defined as follows:

1) The quasi centralizer (quasi-commutant) of B is $\text{QC}(B) = \bigcup_{k \geq 1} \text{QC}(k, B)$, where $\text{QC}(k, B) = \{ a \in A : \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \}$ for all $x \in B$ and all $\lambda \in \mathcal{E}$.

2) The σ-quasi centralizer (σ-quasi-commutant) of B is $\text{QC}_\sigma(B) = \bigcup_{k \geq 1} \text{QC}_\sigma(k, B)$, where $\text{QC}_\sigma(k, B) = \{ a \in A : \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \}$ for all $x \in B$ and all $\lambda \in \rho_\lambda(a)$.

3) The ρ-quasi centralizer (ρ-quasi-commutant) of B is $\text{QC}_\rho(B) = \bigcup_{k \geq 1} \text{QC}_\rho(k, B)$, where $\text{QC}_\rho(k, B) = \{ a \in A : \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \}$ for all $x \in B$ and all $\lambda \in \sigma_\lambda(a)$.

Remark: In this remark we state [1, Theorem 2.1] that will be used frequently in this paper, the theorem states that:

If A is a complex normed algebra and $D \subseteq B \subseteq A$. Then for $k \geq 1$,

(i) $C(B) \subseteq \text{QC}(k, B) = \text{QC}_\sigma(k, B) \cap \text{QC}_\rho(k, B)$.

(ii) $Q(k, A) = \text{QC}(k, A) \subseteq \text{QC}(k, B) \subseteq \text{QC}(k, D)$.

(iii) $Q_\sigma(k, A) = \text{QC}_\sigma(k, A) \subseteq \text{QC}_\sigma(k, B)$.

(iv) $Q_\rho(k, A) = \text{QC}_\rho(k, A) \subseteq \text{QC}_\rho(k, B) \subseteq \text{QC}_\rho(k, D)$.

2. Some Properties of Centralizing

For a Banach algebra A we well denote A^{-1} for the set of all invertible elements in A. The following propositions generalise some results in [7] and [8] which have similar proofs.

Proposition 2.1: Let J be an ideal of a unital complex Banach algebra A and $k \geq 1$.

(i) If $a \in \text{QC}_\sigma(k, J)$ and p is a complex polynomial of degree d then $p(a) \in \text{QC}_\sigma(k^d, J)$.

(ii) If $a \in \text{QC}_\sigma(k, J) \cap A^{-1}$, then $a^{-1} \in \text{QC}_\sigma(k \| a \| \| a^{-1} \|, J)$.

(iii) If $a \in \text{QC}_\sigma(k, J)$ and $b \in A^{-1}$, then $b^{-1}ab \in \text{QC}_\sigma(k \| b \|^2 \| b^{-1} \|^2, J)$.

Proof:

(i) Let $x \in J$ and $\lambda \in \rho_\lambda(p(a))$ be arbitrary.

However, for any $\lambda \in \rho_\lambda(p(a))$ there exist $\alpha_1, \alpha_2, \ldots, \alpha_{d-1}$, α_d and β such that $\lambda - p(a) = \beta (\alpha_1 - a)(\alpha_2 - a) \ldots \ldots$
(\alpha_{d-1} - a) (\alpha_d - a). [See 3, page 21]. Then \alpha_1, \alpha_2, \ldots, \alpha_{d-1}, \alpha_d belong to \rho_d(a).

Now, since \(a \in QC_\sigma(k,J) \) and \(J \) is an ideal of \(A \), then
\[
\| x (\lambda - p(a)) \| = \| x \beta (\alpha_1 - a) (\alpha_2 - a) \ldots (\alpha_{d-1} - a) (\alpha_d - a) \| \\
\leq k \| (\alpha_d - a) x (\alpha_1 - a) (\alpha_2 - a) \ldots (\alpha_{d-1} - a) \| \leq k^d
\]
and so on after d-steps we get that
\[
\| x (\lambda - p(a)) \| \leq k^d \| (\alpha - a) (\alpha_2 - a) \ldots (\alpha_{d-1} - a) (\alpha_d - a) \| \beta \|
\]
\[
= k^d \| (\lambda - p(a)) x \|.
\]
Therefore, \(p(a) \in QC_\sigma(k,J) \).

(ii) Let \(a \in QC_\sigma(k,J) \cap A^{-1} \), then \(\| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \)
for all \(x \in J \) and all \(\lambda \in \rho_d(a) \). Since \(a^{-1} \in A \) then \(0 \in \rho_d(a) \) and \(0 \in \rho_d(a^{-1}) \).

Note that, for \(\lambda \neq 0 \), \(\lambda \in \rho_d(a^{-1}) \) if and only if \((\lambda - a^{-1})^{-1} \) exists if and only if \((\lambda^{-1} a^{-1}) \) \((\lambda - a^{-1})^{-1} \) exists if and only if \((\lambda^{-1} a)^{-1} \) exists if and only if \(\lambda^{-1} \in \rho_d(a) \).

Now for any \(\lambda \in \rho_d(a^{-1}) \), \(\lambda \neq 0 \) and all \(x \in J \) we have
\[
\| x (\lambda - a^{-1}) \| = \| x (\lambda^{-1} - a) (\lambda^{-1} a^{-1}) \| \leq \| x (\lambda^{-1} - a) \| \| \lambda^{-1} \| \| a^{-1} \|
\]
\[
\leq k \| (\lambda^{-1} - a) x \| \| \lambda^{-1} \| \| a^{-1} \| = k \| \lambda^{-1} a (\lambda - a^{-1}) x \| \| \lambda^{-1} \| \| a^{-1} \|
\]
\[
\leq k \| (\lambda - a^{-1}) x \| \| a \| \| a^{-1} \|.
\]
However, \(\| x a^{-1} \| = \| a a^{-1} x a^{-1} \| \leq \| a^{-1} \| \| a \| \| a^{-1} \|
\]
\[
\leq k \| a^{-1} \| \| a \| \| a^{-1} \|.
\]

Therefore, \(\| x (\lambda - a^{-1}) \| \leq k \| a \| \| a^{-1} \| \| (\lambda - a^{-1}) x \| \)
for all \(x \in J \) and all \(\lambda \in \rho_d(a^{-1}) \). This means that \(a^{-1} \in QC_\sigma(k \| a \| \| a^{-1} \|, J) \).

(iii) Let \(a \in QC_\sigma(k,J) \) and \(b \in A^{-1} \) then,
\[
\rho_d(b^{-1} a) = \{ \lambda \in \mathbb{C} : (\lambda - b^{-1} a)^{-1} \text{ exists} \} = \{ \lambda \in \mathbb{C} : b^{-1} (\lambda - a)^{-1} b \text{ exists} \}
\]
\[
= \rho_d(a).
\]

Now for any \(\lambda \in \rho_d(b^{-1} a) \) and all \(x \in J \) we have:
\[
\| x (\lambda - b^{-1} a) b \| = \| x b^{-1} (\lambda - a) b \| \leq \| b^{-1} b x b^{-1} (\lambda - a) \| \| b \|
\]
\[
\leq \| b^{-1} \| \| b x b^{-1} (\lambda - a) \| \| b \|
\]
\[
\leq k \| (\lambda - a) b x b^{-1} \| \| b \| \| b^{-1} \| \text{ since } a \in QC_\sigma(k,J) \text{ and } b x b^{-1} \in J.
\]
Some Properties of Centralizing in a Unital

\[= k \| b(\lambda - b^{-1}ab) \times b^{-1}\| \| b \| \| b^{-1}\| \leq k \| b \| ^2 \| b^{-1}\| ^2 \| (\lambda - b^{-1}ab) \times \]

Therefore, \(b^{-1}ab \in QC_\sigma(k \| b \| ^2 \| b^{-1}\| ^2, J) \) \qed

Similarly one can prove the following two propositions for \(\rho \)-quasi and quasi centralizer. However, Proposition 2.3 (ii) and (iii) can be proved in another way by using Proposition 2.1 and 2.2 and [1, Theorem 2.1(i)].

Proposition 2.2:- Let \(J \) be an ideal of a unital complex Banach algebra \(A \) and \(k \geq 1 \).

(i) \(\text{If } a \in QC_\rho(k, J) \cap A^{-1} \text{ then } a^{-1} \in QC_\rho(k \| a \| \| a^{-1}\|, J). \)

(ii) \(\text{If } a \in QC_\rho(k, J) \) and \(b \in A^{-1} \text{ then } b^{-1}ab \in QC_\rho(k \| b \| ^2 \| b^{-1}\| ^2, J). \)

Proposition 2.3:- Let \(J \) be an ideal of a unital complex Banach algebra \(A \) and \(k \geq 1 \).

(i) \(\text{If } a \in QC(k, J) \) and \(p \) is a complex polynomial of degree \(d \) then \(p(a) \in QC(k^d, J) \).

(ii) \(\text{If } a \in QC(k, J) \cap A^{-1} \text{ then } a^{-1} \in QC(k \| a \| \| a^{-1}\|, J) \).

(iii) \(\text{If } a \in QC(k, J) \) and \(b \in A^{-1} \text{ then } b^{-1}ab \in QC(k \| b \| ^2 \| b^{-1}\| ^2, J) \).

Now we can remark here that Renneson’s and As’ad’s results in [7] and [8] respectively become corollaries of our propositions.

Corollary 1 :- Let \(A \) be a unital complex Banach algebra, \(k \geq 1 \) and \(p \) is a complex polynomial of degree \(d \).

(i) \(\text{If } a \in Q_\sigma(k, A), \text{ then } p(a) \in Q_\sigma(k^d, A). \)

(ii) \(\text{If } a \in Q_\sigma(k, A) \cap A^{-1}, \text{ then } a^{-1} \in Q_\sigma(k \| a \| \| a^{-1}\|, A). \)

(iii) \(\text{If } a \in Q_\sigma(k, A) \) and \(b \in A^{-1}, \text{ then } b^{-1}ab \in Q_\sigma(k \| b \| ^2 \| b^{-1}\| ^2, A) \).

(iv) \(\text{If } a \in Q_\rho(k, A) \cap A^{-1}, \text{ then } a^{-1} \in Q_\rho(k \| a \| \| a^{-1}\|, A). \)

(v) \(\text{If } a \in Q_\rho(k, A) \) and \(b \in A^{-1}, \text{ then } b^{-1}ab \in Q_\rho(k \| b \| ^2 \| b^{-1}\| ^2, A). \)

(vi) \(\text{If } a \in Q(k, A) \text{ then } p(a) \in Q(k^d, A). \)

(vii) \(\text{If } a \in Q(k, A) \cap A^{-1}, \text{ then } a^{-1} \in Q(k \| a \| \| a^{-1}\|, A). \)
(viii) If \(a \in Q(k, A) \) and \(b \in A^{-1} \), then \(b^{-1}ab \in Q(k \| b \|^{2}, b^{-1} \| b^{-1} \|^{2}, A) \).

Proof:
Let \(J = A \) in the above proposition, then use [1, Theorem 2.1].

3. Linearly Dependence in Quasi Centralizing Sets

If \(A \) is a complex normed algebra and \(a, b \in A \), then the inner derivation corresponding to \(a \) is denoted by \(D_{a} \), which is a bounded linear operator on \(A \) defined by \(D_{a}x = ax - xa \). The bounded linear operators \(I_{a} \) and \(R_{a} \) on \(A \) are defined by \(I_{a}x = ax \) and \(R_{a}x = xa \). \(D_{a} \) is called topologically nilpotent if \(\lim_{n \to \infty} \| D_{a} \|^n = 0 \). The following theorem generalises proposition 3.4 in [7] (which has a similar proof), so the proposition becomes a corollary of our theorem. In the proof of the following theorem we shall use [2, Theorem 2.3] which states that \(\text{Let } A \text{ be a complex Banach algebra with unity, } J \text{ a closed ideal of } A, \text{ and } a \in QC(J) \). Then \(D_{a} \) is topologically nilpotent. Where \(D_{a} \) is restricted to a domain \(J \).

Theorem 3.1 Let \(J \) be a closed ideal of a unital complex Banach algebra \(A \), and let \(a \in QC(J) \) and \(b \in J \). Then \(ab \) and \(ba \) are linearly dependent if and only if \(ab = ba \).

Proof:
Suppose that \(ab \) and \(ba \) are linearly dependent. Then there exist \(\alpha, \beta \in \mathbb{C} \) such that \(\alpha \neq 0 \) or \(\beta \neq 0 \) and \(\alpha ab + \beta ba = 0 \). Then two cases.

Case 1: If \(\alpha + \beta = 0 \), it is clear that \(ab = ba \).

Case 2: If \(\alpha + \beta \neq 0 \), then
\[
0 = \alpha ab + \beta ba = (\alpha I_{a} + \beta R_{a})b = [(\alpha + \beta)I_{a} - \beta(I_{a} - R_{a})] b = [(\alpha + \beta)I_{a} - \beta D_{a}] b.
\]
Hence \(ab = I_{a}b = \gamma D_{a}b \), where \(\gamma = \frac{\beta}{\alpha + \beta} \in \mathbb{C} \). However, \(I_{a} \) and \(D_{a} \) commute, then by induction we have, \(L_{a}^{n}b = \gamma^{n}D_{a}^{n}b \) for all natural numbers \(n \), and so \(a^{n}b = \gamma^{n}D_{a}^{n}b \). Since \(a \in QC(J) \) then by [2, Theorem 2.3] \(D_{a} \) is topologically nilpotent; that is \(\lim_{n \to \infty} \| D_{a} \|^n = 0 \).

However, \(\| a \cdot b \| = \| \gamma \cdot D_{a} \cdot b \| \leq |\gamma| \| D_{a} \| \cdot \| b \|^{n} \), then for any \(\lambda \in \mathbb{C} \setminus \{0\} \),
Some Properties of Centralizing in a Unital

\[
\lim_{n \to \infty} \| \lambda \cdot a \cdot b \|^n = 0. \quad \text{Hence the series } \ f(\lambda) = \sum_{n=0}^{\infty} \lambda^{-n} a^n b \text{ is absolutely convergent, then by the completeness of } A \text{ the series converges. But } J \text{ is a closed ideal of } A \text{ and } a^n b \in J \text{ for all natural numbers } n, \text{ then } f(\lambda) \in J \text{ and } (\lambda a) f(\lambda) = b.
\]

However, \(a \in QC(J), \text{ then there exists } k \geq 1 \text{ such that } \| f(\lambda) (\lambda - a) \| \leq k \| \lambda - a \| f(\lambda) \|. \text{ Therefore, } f(\lambda) (\lambda - a) = b + \lambda^{-1} (ab - ba) + \lambda^{-2} (a^2 b - bab) + \ldots. \text{ is a bounded } J\text{-valued function on } \mathfrak{e}\{0\} \text{ which can easily be seen analytic there. But } \{0\} \text{ is a countable compact subset of } \mathfrak{e}, \text{ then by [9] it has zero analytic capacity and so by [4, Theorem 1.10VIII], } f \text{ extends to be analytic on } \mathfrak{e}. \text{ Hence, by Liouville's Theorem } f(\lambda) (\lambda - a) \text{ is constant, which implies that } ab = ba. \text{ Therefore, } ab = ba \text{ whenever } ab \text{ and } ba \text{ are linearly dependent.}

The converse is straightforward \(\Box \)

Corollary:- [7, Proposition 3.4]

Suppose that \(A \) is a unital complex Banach algebra, \(a \in Q(A) \) and \(b \in A. \) Then \(ab \) and \(ba \) are linearly dependent if and only if \(ab = ba. \)

Proof:

Let \(J = A \) in the above Theorem, then use [1, Theorem 2.1] \(\Box \)

At the end we shall write the following paragraph which consists of the proofs of Lemma 2.2 and Theorem 2.3 from [2] which are not a part of this paper, but they are written here because [2] is not published until the moment of writing this paper.

2.2 Lemma in [2] Let \(A \) be a complex Banach algebra with unity, \(J \) a closed ideal of \(A, \) and \(k \geq 1 \) such that \(a \in QC(k, J). \) If \(M \) is a closed commutative subalgebra of \(BL(J) \) containing the identity operator \(I, L_a \) and \(R_a \) then \(\| D_a T \| \leq (k + 1) \| T \| (\lambda - L_a) T \| \) for all \(T \in M \) and all \(\lambda \in \mathfrak{e}. \) Where \(L_a \) and \(R_a \) are restricted here to a domain \(J. \)

Proof

Since \(a \in QC(k, J), \) for all \(x \in J \) and \(\lambda \in \mathfrak{e}, \) we have, \(\| x (\lambda - a) \| \leq k \| \lambda - a \| \| x \|. \) However, \(\| (\lambda - a) x \| = \| (\lambda - R_a) x \| \) and \(\| (\lambda - a) x \| = \| (\lambda - L_a) x \|, \) then \(\| (\lambda - a) x \| \leq k \| (\lambda - R_a) x \|. \) So that \(\| D_a x \| = \| (\lambda - R_a) x - (\lambda - L_a) x \| \leq (k + 1) \| (\lambda - L_a) x \|. \) Finally, since \(T \in J \) for all \(x \in J, \) then the result follows by replacing \(x \) by \(T \) in the above inequality and taking the supremum over all \(x \) in \(J \) with \(\| x \| = 1 \) \(\Box \)

In the proof of the following theorem we need [6, Theorem 4.2], which states that "Suppose that \(M \) is a commutative complex Banach algebra with unity, that \(u \) and \(v \) are elements of \(M, \) and that for some \(c \geq 0, \)
\[\| u \| \leq c \| (\lambda - v) x \| \text{ for all } x \in M \text{ and all } \lambda \in \mathcal{C}. \] Then \(u \in \text{Rad}(M) \), the radical of \(M \).

2.3 **Theorem in [2]** Let \(A \) be a complex Banach algebra with unity, \(J \) a closed ideal of \(A \), and \(a \in \text{QC}(J) \). Then \(D_a \) is topologically nilpotent. Where \(D_a \) is restricted to a domain \(J \).

Proof

Since \(J \) is closed in the Banach algebra \(A \), then \(J \) is complete and so \(BL(J) \) is a complex Banach algebra. Since \(a \in \text{QC}(J) \), then there exists \(k \geq 1 \) such that \(a \in \text{QC}(k, J) \). Now, let \(M \) be a closed commutative subalgebra of \(BL(J) \) containing the identity operator \(I \), \(L_a \) and \(R_a \), then by Lemma 2.2, \(\| D_a T \| \leq (k + 1) \| (\lambda - I_a) T \| \) for all \(T \in M \) and all \(\lambda \in \mathcal{C} \). But \(M \) is closed in \(BL(J) \) and \(BL(J) \) is complete, then \(M \) is complete, then by [6, Theorem 4.2] we have \(D_a \in \text{Rad}(M) \) and so \(\lim \| D_a^n \| = 0 \).

That means, \(D_a \) is topologically nilpotent. \(\square \)

References

63