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Abstract

In this paper, we use the adaptive kernel estimates method to improve
nonparametically the estimator of the probability density function (pdf)
using the Erlang kernel (Erlang estimator). In addition, the cumulative
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distribution (cdf) of the improved Erlang estimator and the related hazard
rate function for independent and identically distributed (iid) data will be
evaluated. The performance of improved Erlang estimator and the related
hazard rate function are tested using a simulation study.

1. Introduction:

Suppose we have a set of observed data assumed to
be a sample from unknown pdf, we can construct a
density estimation of the pdf from this sample.
There are several nonparametric methods to do this,
such as histograms which is widely use. When
constructing a histogram, two choices must be made,
the bandwidth and the position of the bin edge, if
we vary these two choices, the aspect of the
histogram will vary too, then we will get different
features of the histogram. To avoid these
disadvantages, we may use naive method which
depends on constructing a box with a fixed
bandwidth at every point of the observed data.

However, naive method gives more stability aspect
than histogram, it suffers from discontinuity and has
jumps at points. To overcome these drawbacks,
kernel method is available and regards as a
commonly used estimator to estimate pdf from an
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observed data, a non-negative support pdf and a
fixed bandwidth may be used to construct the
estimator, this estimator is continuous and
differentiable. But this estimator suffers from a
slight drawback if the data was collected from a
long-tail distribution.

If we estimated the pdf, then we can think of
estimation of the hazard rate function which have
been considered in the literature. Hazard rate
function estimation by nonparametric methods has
an advantage in flexibility because no formal
assumptions are made about the mechanism that
generates the sample order than the randomness.
Estimators of the hazard function based on kernel
smoothing have been studied extensively. For
instance, see [7], [9], [8], [4], [11] and [6].

In the preceding methods, the bandwidth plays an
important role in estimation accuracy and
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smoothing, if tends to zero or becomes large, all
detail of the curve of the estimator spurious or
otherwise obscured. So, and in order to deal with
this difficulty, various adaptive methods have been
proposed, for instance, the nearest neighbor and the
adaptive kernel methods.

In [1] Alain Berlinet et al are interested in the data-
based selection of a variable band-width within an
appropriate parameterized class of functions. They
presented an automatic selection procedure
inspired by the combinatorial tools developed in
Devroye and Lugosi (2001) see [2]. In addition they
showed that the expected error of the
corresponding selected estimate is up to a given
constant multiple of the best possible error plus an
additive term which tends to zero under mild
assumptions.

In [5] Van Kerm describes the Stata module adaptive
kernel density (akdensity). akdensity extends the
official Stata command kdensity that estimates
density functions by the kernel method. He cleared
that the extensions are of two types. Firstly,
akdensity allows the use of an adaptive kernel
approach with varying, rather than fixed,
bandwidths. Secondly, akdensity estimates point
wise variability bands around the estimated density
functions. In [3] Salgado-Ugarte et al explored the
use of one implementation of a variable kernel
estimator in conjunction with several rules and
procedures for bandwidth selection applied to
several real data sets.

In [7] Salha R. et al used kernel method in their
study, a new kernel called Erlang kernel was
proposed as follows ¢

L F(u 1)Ft%exp(—i(u%)), h>0,t50 ()

10 x h
ri+-
(+h)

KE(x,%Xt) -

and the estimator of the pdf which called Erlang
estimator was in the form «

f0=-YKbX) @

In addition, the hazard rate function using Erlang
estimator was evaluated and the performance was
tested for the estimators. In this paper, we use the
adaptive kernel estimates method to improve Erlang
estimator and the related hazard rate function.
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This paper is organized in five sections. In the
second section, we state some information about
that adaptive kernel method which will be used in
our study. In the third section, we improve the
Erlang kernel estimator, then its performance will
be tested via a simulated data. In the fourth section,
we evaluate the cdf of the improved estimator, then
evaluate the improved hazard rate function. Also,
the performance of the improved hazard rate
function will be tested via the simulated data. In the
fifth section, we introduce comments and
conclusion.

2. The adaptive kernel method:

The main idea of this method is to construct a kernel
estimator using a specific kernel and make the
bandwidth variable from a point of the observed
data to another. This procedure is based on the
common sense notion that a natural way to deal
with long tailed densities is to use a broader kernel
in regions of low density, this able the observation in
the tail to take appropriate mass over a wider range
than those observations in the main part of the
distribution.

In [10] a clear strategy is stated to apply this method
consists of three steps as follows:

1- Find a pilot estimate F(t) that satisfies

~ . n
f(X;)>0 for all ! where Xk is a family of iid.

2- Define the local bandwidth factor 4 by

zi{f(xi)} 0<a<1
g

1
where g :(r[izlf (Xi)y the geometric mean of
F(X)

3- Define the adaptive kernel estimator by

f09=2 3K D)X

h-:h*ﬂfll K

where is the kernel function and h is

the bandwidth.
More detail of this method is available in [10].

3. The improvement of density estimation:
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In this section, we will improve 1 -where 2 is
considered- the Erlang kernel estimator denoted
(EKE) in [7] using the strategy in section 2. In
addition, the performance of the improved Erlang
kernel estimator (IMEKE) using a simulation study
will be tested, a sample is taken from the
exponential distribution of size 400 for this aim.
Finally, the mean squared error (MSE) will be
computed.

Applying the strategy of improvement appears in the
following steps.

1- The pilot estimate which we choose is the
Gaussian kernel estimator, where the kernel is

K(t) = %exp(—O.Stz)

2- In our study @ was chosen to equal 0.5, so the

local bandwidth factor 4 which makes the
bandwidth vary at every observation point is
defined by

A {f‘(xo]
g

3- Now, the improved estimator IMKEK is defined to
be as follows:

F09=2 3 Ke (D)X

where

h =h*4

K

E is the Erlang kernel which is our choice in this

paper and h is a bandwidth which will be evaluated
by the relation

1
5

hy, = 0.79Rn 5, )

where R is the interquartile range. see [10] page 47.

A sample of 400 observation from the exponential
distribution f(x) =exp(=x) is generated and
graphed using R program, the graph is given in
Figure 1. This figure shows the curves of EKE and
IMEKE together with the true density.
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Figure 1: The EKE and IMEKE estimators of the
exponential density underlying the generated
sample.

The figure shows that the curve of IMEKE is closer

to the true density than the curve of EKE, which
indicates for the success of the improvement
process.
Moreover, we calculated MSE for different numbers
of points to test the performance of old and new
estimators, and show the effect of the number of
points in MSE. The results are shown in Tablel.

Table 1: MSE for different numbers of points

NumPer of EKE IMEKE Ratio ¢.)f
points decreasing
100 0.009147 0.008785 3.96%
150 0.007237 0.006946 4.02%
200 0.005909 0.005522 6.54%
300 0.004659 0.004174 10.4%

The table shows decreasing in MSE in all choices of
numbers of points which mean that IMEKE more
accuracy than EKE. Moreover, we calculated in the
fourth row of the table the ratio of decreasing in
MSE using the equation:

(((MSE of EKE) - (MSE of IMEKE))/(MSE of EKE))*100%


http://resportal.iugaza.edu.ps/journal.aspx?id=3
http://creativecommons.org/licenses/by/4.0/

On Improvement of Hazard Rate Function Estimation
Using Adaptive Kernel Estimates

Raid Salha
Hazem El Shekh Ahmed
lyad Alhoubi

which gives the ratio of decreasing in MSE of EKE as
a result of improving process. Table 1 shows that the
bigger number of observation points, the bigger
ratio in reduction MSE.

These ratios in addition with the results in the
middle two rows in Table 1 ensure the effect of the
sample size used in estimating process.

4. The improvement of the hazard rate
function:

In this section, we will evaluate the cdf of IMEKE
then evaluate the improved hazard rate function
which will be denoted through this paper by
(IMHEKE). The hazard rate function related to EKE
will be denoted through this paper by (HEKE). In
addition, the performance of IMHEKE using the
same sample in Section 3 will also be tested for
values close to zero which we concern in, and MSE
will be computed for different numbers of
observation points closed to zero.

Definition 1: The cdf of IMEKE is defined
by:

Fo)=['Fudu= %ijoxKE (u,%)(xi)du

Proposition 1: The cdf of IMEKE is given
by:

F00 =2 YA~ h)(t-F(@)]

where, F(¢;) is the value of the Gamma cdf at

t 1
= (1+—
o=~ (1)

Proof:
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where F(¢;) is the value of the Gamma cdf
at i
Now, let the kernel estimator of the survivor
functionS ()be S(x)=1—F(x), then we
define IMHEKE as follows:

. f(x

F(x) = A( )
S(x)
Figure 2 shows the performance of HEKE

and [HMEKE together with the true hazard
rate function.
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Figure 2: The HEKE and IMHEKE estimators of the
exponential density underlying the generated sample.

It is clear that the curve of IMHEKE near zero is
closer to the true hazard rate function than the curve
of HEKE, which indicates that IMHEKE gives more
accurate results than HEKE.

Table 2: MSE for two proportion of points near zero

Percentage ke IMHEKE Ratio of
of points decreasing
15% 0.033189 0.032114 3.24%
10% 0.043186 0.041263 4.45%

In addition, MSE for the boundary points near zero is
evaluated using 15% and 10% of the observation
points that closed to zero. Table 2 shows the
measures of MSE at the two proportions. It is
obvious that when we become close to zero we get
less MSE for IMHEKE. In the fourth row of the table
we calculated the ratio of decreasing in MSE using
the equation:

(((MSE of HEKE) -
HEKE))*100%

(MSE of IMHEKE))/(MSE of
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which gives the ratio of decreasing in MSE of HEKE
as a result of improving process. The ratios ensure
the improvement of the performance of the
estimator HEKE.

5. Comments and Conclusion:

In this paper, we have improved EKE using the
adaptive Kkernel estimates method. The new
estimator IMEKE shows a satisfactory improvement
of performance.

This appear clearly in sketching the curves of
estimators and the true density, and the evaluation
of MSE. Elaborated further, adaptive kernel method
produced good improvement in the performance of
EKE, graphically it makes the curve of IMEKE closer
to true density than EKE. Further, MSE when we use
IMEKE is less than it if EKE was used. In addition, the
simulation study shows and ensures the effect of the
number of the observation points used in estimating
process, we notice that the larger number of points,
the smaller MSE.

Moreover, the improvement of HEKE was so obvious
when the curves of HEKE, IMHEKE with true hazard
rate function have been drawn. The new hazard rate
function IMHEKE shows acceptable improvement of
performance for the values close to zero which we
are concern in.

The effect of the improvement process also
appeared when MSE was evaluated for two
proportions of the observation points near zero, it
was clear that the small proportion close to zero
gave the lowest MSE.

From the above study we conclude that the adaptive
kernel estimates method gives a good improvement
in the performance of the estimators.
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