The Idamic University Journal (Series of Natural Studies and Engineering)
Vol.15, No. 2, pp 95-126, 2007, ISSN 1726-6807, http://www.iugaza.edu.ps/aralresearch/

Design of a Microsoft Version of MIPS Microprocessor
Simulator

Mohammad A. Mikki*, Mohammed R. EI-Khoudary
Electrical and Computer Engineering Department, Faculty of Engineering ,
ISLAMIC University of Gaza, P.O. Box-108, Gaza, Palestine
Tel: +970-8-2823311, Fax: +970-8-2823310,

E- mail: mmikki @iugaza.edu.ps, m_elkhoudary@hotmail.com

ABSTRACT: We describe the implementation of a MIPS Simulator called MIPS-
SIM. MIPS-SIM is a GUI, Javabased simulator for the MIPS assembly language.
MIPS, the computer architecture is widely used in industry and is the basis of the
popular textbook Computer Organization and Design by David Patterson and John
Hennessy, used a over 400 universities. The third edition of this text (published by
Morgan Kaufmann in 2005) uses standard 32-bit MIPS as the primary teaching
ISA. The MIPS-SIM simulator has been implemented for educationa purposes
with characteristics that are especialy useful to undergraduate computer science
and engineering students and their instructors who use the above textbook. MIPS-
SIM should be useful in courses such as computer organization and architecture,
assembly language programming, and compiler writing. MIPS-SIM implements
amost the entire MIPS32 assembler-extended instruction set. MIPS-SIM & so
provides a simple debugger and minimal set of operating system services.

We test MIPS-SIM simulator by running several MIPS assembly programs.
Results prove the accuracy, correctness, effectiveness and usefulness of MIPS-
SIM.

KEYWORDS
MIPS processors, Simulator, Assembly language, Instruction set, Assembler

4adal MIPS cladlaal Slaa asasal

Clalleal 3l8lae zali 3 ke 8 Al MIPS-SIM arecsi Caia g Caad) 138 8 o 685 1 gaddall
e J—eliill Lpasuy Sy e Jeny 5 JVA Aal 5% MIPS-SIM - =l o) .MIPS
erela) Sl G g deliall 8 dasnull s sala Bl e 5 e MIPS L axdidd)

a5 Osm b ubs Cpdlsall Computer Organization and Design) se-diall
S osa il J3 e ESD 138 (pe BN Akl o) LAesla 400 (o ST 3 e QLSS aadid
A 8l de gana 4Kl At LS MIPS32 bl paiiiy 2005 alall 8 (jlad <
& 0o IS OOl Bae pailiady Lpales al 2Y MIPS-SIM slSladdl mali gy apesd
el Qi) () sanstion () Gasadl Ay o perode 5 Gsalall dusia) Cpalall ol

http://www.iugaza.edu.ps/ara/research/
mailto:mmikki@iugaza.edu.ps
mailto:m_elkhoudary@hotmail.com

Design of a Microsoft Version of MIPS Microprocessor Simulator

Solee il J G clibus 3 MIPS-SIM gl pladiul oSar L jie ol 3y QliSS
B Slaall el 3 a8 . (COMPIlErS) Claa fiall aparal 5 cauantll el Aol cclowdal
BlSlaal zali oy LS L MIPS32 llaad dpass sill cilaplaill de gana IS 38Laay MIPS-SIM
O B3 53 ae de gena o (5 sing LS Al sladl st Al 314 58 5 MIPS-SIM
s i el 5 MIPS-SIM slSlaal zals y Jialy L L Jaill alaid d5leaal] zal)
sals s Allad 5 daia g A8y ojladll oda il sl 8 MIPS assembly dal 4 sise
MIPS-SIM slSlaall zuali apansd

1. INTRODUCTION

The widely-used Computer Organization and Design [1] text, used at
over 400 universities [2] is based on the MIPS architecture and instruction
set. The third edition of this text uses standard 32-bit MIPS as the primary
teaching ISA. Since computer science and computer engineering
departments may not have adequate access to MIPS equipment to support
laboratory activities, software-based MIPS simulators may be used [2].
Additiona reasons for using smulation software in an organization and
architecture course are described in [3], and two issues of the ACM Journal
of Educational Resources in Computing were devoted to computer
architecture simulators for educationa purposes [4,5]. The SPIM [6]
simulator is used with Computer Organization and Design text and is
described inits Appendix [2].

MIPS is a smple, clean, and efficient RISC computer architecture [1].
The MIPS architecture has several variants that differ in various ways (e.g.,
the MIPS32 architecture supports 32-bit integers and addresses, and the
MIPS64 architecture supports 64-bit integers and addresses).

The architecture of the MIPS computers is smple and regular, which
makes it easy to learn and understand. The processor is a RISC processor
that contains 32 general-purpose 32-bit registers and a well-designed
instruction set that makes it a propitious target for generating code in a
compiler [6]. MIPS processor consists of an integer processing unit (the
CPU) and a collection of coprocessors. Figure 1 shows the general
architecture of the MIPS processor.

In this paper we design a MIPS simulator called MIPS-SIM. MIPS-SIM
is a simulator for the MIPS instruction set. It is a self-contained simulator
that runs MIPS32 assembly language programs. It reads and executes
assembly language programs written for this processor. MIPS-SIM aso
provides a smple debugger and minimal set of operating system services.
The primary use of MIPS-SIM is educationa. MIPS-SIM simulates

96

Mohammad A. Mikki, Mohammed R. El-Khoudary

MIPS32 because the third edition of the above mentioned text uses standard
32-bit MIPS as the primary teaching ISA.

cPuU FPU (Coprocessor 1)
i te
Registers Registers
___$o |
S —
ES51
Arithmetic AL Bt i Iy I
Linit Divide
Arithmete
LInit

Coprocessar 0 (Traps and Memory)

B ad\W Addr Cause

Status EFC

Figure 1: General architecture of the MIPS processor

Since many students do not have access to a RISC-based workstation, the
MIPS-SIM simulator allows MIPS assembly-language to be assembled and
run on an IBM PC (or its compatibles) running Microsoft Windows. Each
student is given a simulated machine that models a MIPS processor. The
simulated MIPS machine is a big Java program. This program understands
the format and behavior of MIPS instructions as defined by the MIPS
architecture. When the MIPS-SIM simulator executes a MIPS assembly
program it simulates the behavior of areal MIPS processor. It fetches MIPS
instructions from a smulated machine memory, decodes them and executes
them. It transforms the state of the simulated memory and simulated
machine registers according to the defined meaning of the instructions in the
MIPS architecture specification [7].

97

Design of a Microsoft Version of MIPS Microprocessor Simulator

Obvioudy, there are dready several very good simulators. The main
difference with our smulator is that it is being implemented in Java and is
intended for academic use.

Although running assembly programs on workstations that contain the
MIPS hardware is significantly faster, we use a simulator because these
workstations are not generally available. Another reason is that these
machines will not persist for many years because of the rapid progress
leading to new and faster computers. In addition, simulators can provide a
better environment for low-level programming than an actual machine
because they can detect more errors and provide more features than an
actual computer [6]. Finaly, simulators are useful tools for studying
computers and the programs that run on them. Because they are
implemented in software, not silicon, they can be easily modified to add
new instructions, build new systems such as multiprocessors, or smply to
collect data [6].

The MIPS-SIM simulator implements the educationally important
portions of the MIPS instruction set utilized by third edition of the
Computer Organization and Design textbook [1]. Specifically, the MIPS-
SIM simulator implements complete MIPS instructions, complete
trandation of MIPS ingdructions to MIPS machine language, advanced
exception handling for better and faster debugging, full size data and stack
segments, and support for most pseudo instructions. Pseudo-instructions are
expanded into one or more native MIPS instructions by the assembler.

The MIPS-SIM simulator is written in Java 1.4.2, and runs on IBM PCs
(or its compatibles) under Microsoft Windows environment.

The rest of the paper is organized as follows: Section 2 presents related
work. Section 3 presents the details of the implementation of MIPS-SIM.
Section 4 presents the pseudo code of MIPS-SIM. Section 5 validates the
design of the proposed simulator. Finaly, section 6 concludes the paper.

2. RELATED WORK

A number of MIPS simulators have been developed over the years. Most
of these simulators can be classified by a small number of categories: those
designed for research use (e.g. MIPSI), those that focus on certain MIPS
architectural features such as pipelines (e.g. WebMIPS [8], SmallMIPS [9],
RTLSm[10]), those that depend on SPIM (e.g. MIPSASM, TinyMIPS), and
genera purpose smulators [2]. Examples of the latter include Mipslt [11]
and SPIM [6]. Most MIPS simulators include features for visualizing and/or
animating MIPS components. SPIM is without doubt the most widely

98

Mohammad A. Mikki, Mohammed R. El-Khoudary

known and used MIPS simulator, serving both education and industry [2]. In
the following, we describe some of the existing MIPS simulators.

In [9] the authors create a simulator for the MIPS architecture. They call
their indruction set Small-MIPS, which is a subset of MIPS R2000
instruction set, plus some interesting instructions that they added. MIPS
assembler is created as part of the pipeline simulator project. It takes in a
human-readable assembly file and translates it into a data structure that is
only readable to the pipeline smulator. Not al of MIPS2000 instructions
are supported.

In [12] MIPS SDE (Software Development Environment) which is a
cross-development system for MIPS architecture processors is described. It
produces code for a variety of MIPS-based platforms and aso simulator
platforms. It is intended for building and debugging statically-linked
applications to run in embedded environments on "bare-metal" CPUs or
light-weight operating systems.

In [13] MIPSI; MIPS simulator is developed. MIPSI is an ingtruction-
level simulator for the MIPS family of processors. Its main attributes are
simplicity and robustness. MIPSI runs on big or little Endian MIPS boxes
and on Alpha platforms.

In [6] SPIM MIPS simulator is described. SPIM is a self-contained
simulator that runs MIPS R2000/R3000 assembly language programs. It
reads and immediately executes assembly language code for this processor
(it does not execute binary programs). SPIM provides a simple debugger
and minimal set of operating system services. SPIM implements almost the
entire MIPS assembler-extended instruction set for the R2000/R3000.
SPIM implements both a smple, terminal-style interface and a window
interface.

Findly, in [2,14] MARS (MIPS Assembler and Runtime Simulator) is
described. MARS is a lightweight Interactive Development Environment
(IDE) for MIPS assembly language programming. It is intended for
educationa-level use with Patterson and Hennessy's Computer Organization
and Design, third edition.

3. DESIGN APPROACH OF MIPS-SIM

In this section we describe in detail the design of the MIPS-SIM
simulator. MIPS-SIM isafriendly GUI, Java-based ssimulator for the MIPS
assembly language. It supports interactive editing; compilation; execution
and debugging of MIPS assembly programs. MIPS-SIM features
WY SIWY G on-the- spot modification where the user can view and edit the
register file and data and stack segments. MIPS-SIM design is made with

99

Design of a Microsoft Version of MIPS Microprocessor Simulator

the scalability in mind where the user can easily add new instructions. The
user can also reset the processor just by clicking one button. The simulator
can model parallel execution of multiple MIPS assembly programs on
multiple virtua MIPS processors. MIPS-SIM supports both single step and
normal execution. MIPS-SIM also automatically saves work done by the
user. MIPS-SIM includes a complete user manual.

The MIPS-SIM simulator implements the educationally important
portions of the MIPS instruction set utilized by Computer Organization and
Design, third Edition [1]. Specifically, the MIPS-SIM simulator
implements:

Entire MIPS32 assembler-extended instruction set.

- Advanced exception handler for better and faster debugging.
Full sze dataand stack Segments.
Support for most pseudo instructions.

The MIPS-SIM program is divided into software modules. Each module
represents a component in the simulator. Modular design simplifies the
deign process, and makes it easy to enhance and debug the code.

Instructions | CPU Module <
Module —
+ 'y Memory
Module
Y 7'y
A A y
Contral Lexica Graphical
» Module and > User
<4—>» Syntax Interface
Anaysis (GUI)
Module Module
7} 7} 7'y

Figure 2: Overview of MIPS-SIM modules

100

Mohammad A. Mikki, Mohammed R. El-Khoudary

An overview of the main components of MIPS-SIM is shown in Figure
2. The CPU module is the core of the simulator. It is in charge of processor
functions where it coordinates the tasks of all other modules. The lexical
and syntax analysis module does lexica and syntax anaysis of assembly
files and produces a data structure that represents the MIPS instructions of
the code segment. The instructions module updates the data structure
generated by the lexical and syntax anaysis module and classifies
instructions based on their format and prepares them for execution. The
memory module smulates the random access memory (RAM) and the
processor's registers. The control module executes the code. Finaly, the
GUI module is used to support the interfacing between the user and the
smulator. It displays the contents of the registers and other useful
information. In the following subsections we describe each module in more
detail.

3.1 CPU Module

CPU module is the core of the smulator. It simulates a real MIPS
processor. CPU module coordinates the tasks of al other modules. The CPU
module supports the following functions. First, setting and displaying the
values of the registers in the register file. Register values are displayed in
the register file pane in the GUI. Second, setting/Resetting and displaying
the values of the special registers LO, HI, PC, EPC, BadVAddr, Status and
cause registers. Third, resetting the CPU to its initial state. Fourth, setting
and displaying the code (text), data and stack segments. Fifth, accessing and
updating memory locations. Sixth, displaying memory locations in the
memory pane in the GUI. Seventh, editing the files in the editor window.
Eighth, handling exceptions. Ninth, modeling of pardld virtua MIPS
processors, i.e., the MIPS-SIM runs as a paralld machine with multiple
MIPS processors. In this mode, multiple MIPS assembly programs could
run simultaneously on multiple virtual MIPS processors.

The UML diagram of the CPU module is shown in Figure 3. In Figure 3
MipsCPU class extends an Observable class; implements an Observer class,
and contains a RegisterController class. These classes do the whole module
interaction coordination. For interactions from MipsCPU to GUI, the
Observable class is used.

101

Design of a Microsoft Version of MIPS Microprocessor Simulator

s Observable

1
Mips‘CPU L -obs.ervers : ArrayList
+notifyObservers()

-dataSegment : RandomAccessMemory +registerObserver(in observer : Observer)

-_reglster_FlIe : RegisterFile . +removeObserver(in observer : Observer)
-instructionFactory : InstructionsCacheProxy

-controlUnit : ControlUnit
-symbolTableManager : SymbolTableManager
-lexicalAnalyzer : LexicalAnalyzer
-syntaxAnalyzer : SyntaxAnalyzer

-sysCallln : String

-sysCallOut : String

-RegisterController : RegisterController K

«interface»
—_ - Observer

+synchronizeState()

[mm——————

+registerDataSegment(in dataSegment : RandomAccessMemory)
+registerControlUnit(in ControlUnit : ControlUnit) -
+registerinstructionsFactory(in instructionsFactory : InstructionsCacheProxy) RegisterController
+registerRegisterFile(in registerFile : RegisterFile) _|-registerFields : Object []
+registerSymbolTableManager(in symbolTableManager : SymbolTableManager) +getRegistervalues() - String [
+registerLexicalAnalyzer(in lexicalAnalyzer : LexicalAnalyzer) +setRegistervalues() : String [
+registerSyntexAnalyzer(in syntaxAnalyzer : SyntaxAnalyzer)
+registerRegisterController(in graphical : Object) : RegisterController
+loadProgram(in path : String)

+compileProgram()

+getLexicalAnalysis() : StringBuffer

+getSyntaxAnalysis() : ArrayList

+getinstruction(in instruction : String) : InstructionNode
+getSymbolLocation(in label : InstructionNode) : InstructionNode
+getMemoryWord(in address : long) : MemoryWord
+getProgramCounter() : String

+getRegisterValue(in registerNumber : int) : String
+getMaxExecutionTime() : long

+getSyscallln() : String

+getSyscallOut() : String

+getRegisterController() : RegisterController

+setRegisterValue(in registerNumber : int, in registerValue : String)
+setSymbol(in label : String, in location : InstructionNode)
+setMaxExecutionTime(in timelnMillis : long)
+setProgramCounter(in newLocation : InstructionNode)
+setSyscallOut(in sysout : String)

+setSyscallin(in sysin : String)

+advanceProgramCounter ()

+execute()

+executeSingle()

+resetCPU()

+synchronizeState ()

+sysCall(in sysCallNo : int)

Figure 3: UML diagram of the CPU module

The GUI components register themselves in the MipsCPU Observable,
and wait for it to synchronize their states. For memory module, the CPU
registers GUI components in the Observable class of the memory module so
that memory may report changes in its state to CPU module anytime. For
text (code) segment, the CPU registers GUI components in the Observable
class of the control module so that text segment may report changes in its
state to CPU module anytime. Using the RegisterController, the register file
can get values from the RegisterController to synchronize its state anytime.
The RegisterController is notified to get values from the register file
whenever a change in these registers occurs.

102

Mohammad A. Mikki, Mohammed R. El-Khoudary

3.2 Lexical and Syntax AnalysisModule

Compilers use two or more phases of analysis to convert code from
source format into target format. MIPS-SIM implements two of these phases
which are the lexica (linear) analysis phase and the syntax analysis phase.
MIPS-SIM ignores the semantic analysis phase because it is not necessary
in assemblers. Lexical and syntax analysis are implemented within the
lexical and syntax analysis module.

Lexica and syntax andysis module consists of two anayzers: lexical
analyzer and syntax analyzer. Lexical and syntax analyss module builds a
valid structured code representation of the MIPS assembly instructions that
is ready to be executed.

Lexical anadyzer converts code into a stream of characters, and then
analyzes it. It checks keywords, constants, and extracts undefined words
used in the code and reports errors in the code (undefined keywords,
undefined numbers). The lexical analyzer is in charge of analyzing the code,
checking for lexica errors, and preparing the code for execution. Syntax
analyzer takes the result generated by the lexical analyzer and checks the
correctness of keywords, variables, and constants. It reports syntax errorsin
the code if they exigt.

The UML diagram of the lexical and syntax analysis module is shown in
Figure 4. In Figure 4; the FileLoader class loads a specified MIPS assembly
file (passed to it by the CPU module as a StringBuffer) into the text (code)
segment and prepares it for compilation, execution and debugging. It then
passes it to the lexical analyzer. The LexicalAnalyzer class first removes all
characters that are not part of the code including arrows, comas, dots, and
white-spaces to prepare the code for the lexical analysis. Lexical analyzer
then starts the analysis process by breaking code into tokens separated by
characters (e.g. arrows, comas, dots, and white-spaces). It then passes these
tokens to the token identifier. After the identification of every token, the
lexical analyzer generates a formatted XML file to be used by the syntax
analyzer. Each line in the XML file corresponds to one MIPS instruction in
the assembly file. The lexical analyzer does not check the correctness of the
structure of the generated XML file. The lexical andyzer also generates a
symbol table (implemented through the SymbolTableManager class) that
contains unresolved references (labels and globa variables). It is the
responsibility of the syntax analyzer to resolve these references. Each entry
in the symbol table consists of three vaues. unresolved reference, type
(CODE_LOCATION or MEMORY_LOCATION), and the physica
location in memory.

103

Design of a Microsoft Version of MIPS Microprocessor Simulator

Syntax analyzer (implemented through the SyntaxAnalyzer class) uses
the XML file generated by the lexical analyzer as its input. It searches this
file for the pre execution block which exists before or after the code. This
block is used to initialize memory data segment. After the syntax analyzer
finds this block; it saves dl its values in the memory data segment. If there
is a label in this block, the syntax analyzer adds it to the symbol table with
the type MEMORY_LOCATION. After al data segment labels and values
are inserted in the symbol table, the syntax analyzer begins fetching
instruction lines from the XML file, one by one. It then creates
InstructionNode ArrayList (one InstructionNode per MIPS instruction) and
fills their fields with data from the corresponding line in the XML file. Any
pseudo instruction is converted into MIPS real ingtructions (implemented
through the Psuedolngruction class). Branching and jumping labels in the
XML file are added to the symbol table with the type CODE_LOCATION.
As an output of the syntax analyzer, an ArrayLis structure of
InstructionNode is generated.

SymbolTableManager

-symbolTable : String [][]

+addSymbol(in label : String, in type : int, in location : long)
+getSymbol(in label : String) : long

SyntaxAnalyzer
-fromLexicalAnalyzer : StringBuffer
+setCodeFromLexicalAnalyzer(in code : StringBuffer)
-checklnstructionSyntax(in instruction : InstructionNode)
-addSymbol(in label : String, in location : InstructionNode)
+analyzeCode() : ArrayList

FileLoader

-currentFile : File

1

1
+loadProgram(in String path) 1
+getCurrentFile() : StringBuffer :

Pseudolnstruction

1 -substitutelnstructions : String

LexicalAnalyzer +convertTolnstructions()
+setPreviousNode(in previousNode : InstructionNode)
+getPreviousNode() : InstructionNode

-fileLoader : FileLoader

-currentProgram : StringBuffer
+loadProgram(in path : String) : StringBuffer
-removeUnwantedCharacters()
+identifyToken(in token : String) : int
-isKeyWord(in token : String) : boolean
-isConstant(in token : String) : boolean
-isOther(in token : String) : boolean
-isRegister(in token : String) : boolean
+analyzeProgram() : StringBuffer

Figure4: UML diagram of the lexical and syntax analysis module

104

Mohammad A. Mikki, Mohammed R. El-Khoudary

The syntax analyzer then resolves all unresolved references in the
symbol table. All references are given their physical memory locations.

3.3 Instructions Module

The instructions module classifies instructions based on their format and
prepares them for execution. It initializes the instruction execution units and
caches (puts instruction executors objects for fast retrieval in the ingruction
cache proxy implemented by the InstructionCacheProxy class). The
instruction module takes the InstructionNode ArrayList as an input, updates
it and builds five execution units (through the ITypelnstruction,
RTypelnstruction, JTypelnstruction, NULLInstruction, and Syscall classes)
asaresult.

The UML diagram of the instructions module is shown in Figure 5. In
Figure 5, IngructionsFactory class is responsble for getting the desired
instruction from the InstructionNode ArrayList. This is done by the
reflection technology. Reflection technology uses lookup in the file system
to find the <class names (ITypelnstruction, RTypelnstruction,
JTypelngtruction, NULLInstruction, and Syscall classes) and to initiate
instances of them.

InstructionsCacheProxy class is used to speed the above process. It is
used to save much of the time consumed on reflection process mentioned
above. The InstructionsCacheProxy does this by being responsible for
storing instructions in a table in main memory (RAM) for fast retrieval upon
request. So after it receives requests, it looks up its own table (which is
resident in RAM). If the instruction object is aready there, it is returned. If
not, InstructionsCacheProxy uses the IngtructionsFactory to reflect this
instruction from the storage device.

The architecture of the MIPS instruction is defined using the
MIPSInstruction interface which is implemented through five classes:
ITypelnstruction, RTypelnstruction, JTypelnstruction, NULLInstruction,
and Syscall. These classes further process and update the instruction node
and prepare the ingruction for execution by the control module.

3.4 Memory Module

The simulator must implement a memory abstraction for the simulated
MIPS processor. For aread MIPS processor, memory addresses are 32-bit
numbers, ranging from 0x00000000 to OXFFFFFFFF, where each individual
address refers to a byte in memory (thus is byte addressable). Memory holds
both instructions and data. Memory for an executing program is divided into
segments according to function — text (code), static data, heap, and stack.

105

Design of a Microsoft Version of MIPS Microprocessor Simulator

For our simulated processor, the word size is 32 bits, or equivdently, 4
bytes. The main memory module supports the following functions:
M odeling the text (code), data and stack segments.
Displaying the text (code), data and stack segments in their
corresponding panesin the GUI.
Reading/writing a memory word/byte at a specified memory address.
Resetting memory to its empty state.

InstructionsCacheProxy

-Cache : Hashmap . -$ingleInstance 1

-instructionFactory : InstructionsFactory

+getinstruction(in Instruction : String) : MIPSInstruction

+clearCache() InstructionsFactory 1
-InstructionsFactory : InstructionsFactory

1 N +getinstructionFactory() : InstructionsFactory
+getinstruction(in Instruction : String) : MIPSInstruction
T T

«instance» ~ mmmm—mmm 1
! <<throws>> 1

L
| «exception»
InstructionNotFoundException

«interface»
MIPSInstruction
+checkSyntax() : String Q‘
+execute()
Jl>+getAssimthBitString() : String -5
+getinstructionType() : int

Syscall

-assembly : String
-parameters : ArrayList
~T+checkSyntax() : String
+execute()

+getAssemblyBitString() : String
+getinstructionType() : int

S

ITypelnstruction RTypelnstruction JTypelnstruction NULLInstruction
-upperPart : String -upperPart : String -upperPart : String -upperPart : String
-parameters : ArrayList -lowerPart : String -parameters : ArrayList -parameters : ArrayList
+checkSyntax() : String -parameters : ArrayList +checkSyntax() : String +checkSyntax() : String
+execute() +checkSyntax() : String +execute() +execute()
+getAssemblyBitString() : String | |+execute() +getAssemblyBitString() : String | [+getAssemblyBitString() : String
+getinstructionType() : int +getAssemblyBitString() : String | |+getinstructionType() : int +getinstructionType() : int

+getinstructionType() : int

Figure5: UML diagram of the instructions module

The UML diagram of the memory module is shown in Figure 6. The
memory module consists of two sub-modules. The first sub-module is
Random Access Memory (RAM). RAM contains two segments, data
segment and stack segment. RAM is implemented through the
RandomAccessMemory class. The second sub-module is the register file
which holds both genera purpose registers and system registers. The
register file module is implemented through the RegisterFile class. The
Observable class in Figure 6 is included for GUI purposes. This classisin
charge of notifying the GUI component that uses it of any change in
memory locations and registers values.

106

Mohammad A. Mikki, Mohammed R. El-Khoudary

-leftChild : MemoryWord

«interface» Observable
(I:bs(.erver -observers : ArrayList
+
synchronizeState() rotifyObservers()
+registerObserver(in observer : MemoryObserver)
—— +removeObserver(in observer : MemoryObserver)
i
RegisterFile
-registers : Hashmap
-systemRegisters : Hashmap
-registersBaseAddress : long
Regi: ddress : long
+getRegisterValue(in registerNumber : int) : String
+getSystemRegisterValue(in registerNumber : int) : String
+setRegisterRegisterValue(in registerNumber : int, in registerValue : String) RandomAccessMemory
+§elSyslemRe_gislerVaJu(_e(in regislerNu_mber -int, in registerValue : String) “rootword : MemoryWord
+isSystemRegister(in registerNumber : int) : boolean [- - -
+isRegister(in registerNumber : int) : boolean <throws>> | |*9etMemoryWord(in address : long) : MemoryWord
+clearRegisters) 1 [tresetRAM(
+getRegisterBaseAddress(in registerNumber : int) : long 1
gi in registerNumber : int) : long |
T I
D it | «exception» 1
<<throws>> | MemoryOutOfBoundException
! MemoryWord
|
1
1

-rightChil : MemoryWord

-address : long

<<throws>> |-word : String []

+insertOrGet(in requestedLocation : long) : MemoryWord
+setRightWord (in rightChild : MemoryWord)
+setLeftWord(in leftChild : MemoryWord)
+setByte(in byteNo : int, in value : String)

in address : long)

+getByte() : String

+getAddress() : long

+getRightWord() : MemoryWord
+getLeftWord() : MemoryWord

«exception»
RegisterNotFoundException

«exception»
InvalidDataException

Figure 6: UML diagram of the memory module

3.5 Control Module

Control module is in charge of executing the code in either single step
mode (for debugging purposes) or normal mode. Control Unit uses an
instruction pointer to point to the instruction being executed. After
executing an instruction; the control module increments the instruction
pointer to point to the next instruction. Control module insures that no
execution violations occur, and that the execution is not taking too long
time. Program execution taking too long may indicate that the program
entered an infinite loop. The control module takes the InstructionNode
ArrayList as an input and executes the corresponding instruction of each
InstructionNode object.

The UML diagram of the control module is shown in Figure 7. Control
module conggts of three units: the ControlUnit class, the InstructionNode
class, and the Observable interface. ControlUnit class manages the text
segment represented by InstructionNode ArrayList. ControlUnit may clear
the text segment through invoking the clearTextSegment method. The
InstructionNode class is the main unit of the InstructionNode ArrayList tree.
It is used by the syntax analyzer to create the InstructionNode objects. The
ControlUnit class extends the Observable interface so that GUI components

107

Design of a Microsoft Version of MIPS Microprocessor Simulator

can update the content of text segment pane automatically when any change
in the text segment occurs.

Observable

-observers : ArrayList

+notifyObservers()

+registerObserver(in observer : Observer)
+removeObserver(in observer : Observer)

ControlUnit

-textSegment : ArrayList

-instructionPointer : InstructionNode
-maxExecutionTime : long
+getRootInstruction() : InstructionNode
+getCurrentinstruction() : InstructionNode
+getMaxExecutionTime() : long
+setMaxExecutionTime(in timelnMillis : long)
+setTextSegment(in textSegment : ArrayList)
+advancelnstructionPointer()

+execute()

+executeSingle()

+clearTextSegment()

InstructionNode

-instruction : String

-parameters : String []
+getinstructionType() : int
+getAssemblyBitString() : String
+getinstruction() : String []
+checkSyntax() : String
+execute()

Figure 7: UML diagram of the control module

3.6 Graphical User Interface (GUI) Module

The GUI module provides the interfacing between the user and the
simulator. It displays the status of the smulator. The GUI provides the user
with ways to control the basic functions of the MIPS-SIM simulator. The
GUI can be launched by executing the MIPS-SIM program. To close the
GUI, one just needs to select the "Exit" option from the "file" submenu.
Using the GUI, the user can load, run, step, restart and exit a MIPS
assembly program. GUI enables users to reset/retrieve the status of the
MIPS processor. This alows one not only to efficiently run the code and
view the results, but aso to debug the code and to be able to see exactly

108

Mohammad A. Mikki, Mohammed R. El-Khoudary

how the MIPS processor processes each instruction at any cycle, if
necessary. In addition, MIPS-SIM simulator provides several windows that
show what is happening in severd areas of the simulated machine. The
GUI module supports the following functions:

- Initiating the simulator with a reset MIPS processor and a new MIPS
assembly file.

- Providing menu bar for file operations.

- Providing button toolbar for mouse-activated program operations.

- Initializing and displaying the following windows: Integrated
Development Environment (IDE) Window, opened files window,
register file window, system register file window, and data and stack
segments window.

- Setting listeners for al windows and buttons of the GUI.

- Providing atext editor to create/modify files.

When the user invokes MIPS-SIM, he/she gets the graphical user
interface shown in Figure 8. There are twelve main components (panes) of
the GUI that the simulator displays. These panes are: menu bar, button
toolbar, smulator status bar, integrated development environment (IDE)
bar, editor window, debugger (text segment) window, console window
(program input and output window), IDE window detach button, opened
files pane, system registers pane, data and stack segments pane, and register
file pane. The following subsections describe each of these windows
(panes).

3.6.1 Menu Bar

MIPS-SIM menu bar is located at the top of the GUI. It allows users to
handle file operations; view different panes; compile and run files; and get
user help.

The submenus of the menu bar are described in Table 1.

3.6.2 Button Toolbar

Button toolbar includes icons that may be used using the mouse as an
alternative to using the menu bar. Figure 9 shows the button toolbar icons.
These icons are described in Table 2.

3.6.3 Simulator Status Bar

Simulator status pane is used to display messages. When the assembler
encounters errors, it displays them within this pane. This pane also displays
the current status of the smulator. It also shows the state of operations

109

Design of a Microsoft Version of MIPS Microprocessor Simulator

performed by the simulator (e.g., opening a file, saving a file, compiling a
file, etc.).

= rs s of @
Fie s Bl Hok

M B B[| s sty
£ cowramt Fikes [§] 3 10€ Waotoer & §| £ regsser i =
[i File 0 ol EAmor | G Demuner | 9 Cansoie | IR0 b fammmn | [~
I) Remmme
CIR2 M) WD
| vl 00000
[P (o 0sI0O0OID
I8 (afh frotodimn
= System ClRg (a QanE0
___________ IRT (% im0
[RA MM Oe00m D
[Pe oM Remmmn

L 0000000

M geonoGoo0D I gy hedtapamn

EP De00000000 IR g% Rammnn

B D00 R wiy mmmn | |-

St de00oNInn & Dbt O lubvied |

Ca GH0MN00D 3 " - —

l_1 mm B e e e e - E
= Data [Ox10000D00] ... [Ox10040000] =- -

sm sk toxTiidattol _m L=

Figure 8: MIPS-SIM Graphical User Interface (GUI)

RE == IS

Figure 9: Button toolbar icons

3.6.4 Integrated Development Environment (IDE) Bar

The IDE bar enables usersto select one of the following windows: editor,
debugger, and console. All of these windows are empty when the user starts
the simulator. IDE enables users to interface with the running programs
through these windows. These three windows are described in more detail in
the following three subsections.

110

Mohammad A. Mikki, Mohammed R. El-Khoudary

3.6.5 Editor Window

The MIPS-SIM editor is an ASCII-oriented text editor that operates
much like Microsoft Window's Notepad. The button toolbar icons are used
with the editor. Figure 10 shows the editor window.

Enan wennrw £ EEEEEEEEE SRR SR EREHEELY [=
il Entor |3 Debuger T § Consoke
e ma

T an e
gar,T=10ENN
EXT Y | N
EE T I B
EE - B
EE O T B
g, T ian!

o owabdr reer Jwne 3 0-T15140F

=

Figure 10: Editor pane

3.6.6 Debugger (text segment) Window

The text segment window shows ingtructions both from user's program
and the system code that is loaded automatically when MIPS-SIM is
running. For each instruction, the address (displayed in hexadecimal format
between square brackets), machine code (in hexadecimal format), and
assembly language version of the instruction are displayed. A breakpoint
can be set a any instruction. When stepping through program execution, a
pointer points to the next ingruction to be executed. This is useful for
debugging purpose. Figure 11 shows the debugger window.

111

Design of a Microsoft Version of MIPS Microprocessor Simulator

Table 1: Description of the submenus of the menu bar

Submenu

Submenu Options

Description

File

Open

Opens an existing assembly file. When anew fileis
opened, the MIPS processor is reset (all register
contents are cleared and PC is set to 0x00400024
which isthe address of the first instruction in the
text (code) segment

New Creates a new assembly file

Save Saves the modification of the opened and selected
file

Save dl Saves the modification of al opened files

Exit Exits the ssimulator. A dialog box will be displayed

to request user confirmation

View Opened files pane Display/hide the pane that shows all opened files
IDE pane Display/hide IDE pane (debugger, editor, and
consol e panes)
Register file Display/hide register file window
Window
System registers Display/hide system registers pane
pane
Data and stack Display/hide data and stack segments window
Segments Window
Build Compile Compile and assemble the program. A successful
assembly causes the debugger pane to be displayed.
An unsuccessful assembly displays appropriate
error messages and the line number of the
instruction causing the error in the console window
Reset CPU Resets the processor for the loaded file: Registersin
the register file are cleared, and PCisset to
0x00400024
Run Runsthe loaded program from the state it is
currently in (from the instruction pointed to by the
PC) and until it halts
Step Runs the loaded program for only one cycle. It
simulates asingle instruction. The executed
instruction isthe one pointed to by the PC. This
featureis useful for debugging and testing purposes
Help User manual Shows the user manual

About MIPS-SIM

Displays some information about the version of the
MIPS-SIM

112

Mohammad A. Mikki, Mohammed R. El-Khoudary

Table 2: Description of button toolbar icons

Icon Description
B Creates anewsfile. It has same effect as "File/new"
L_}- Opens an existing file. It has same effect as "File/open”
| Saves the current activefile. It has same effect as "File/save”
Saves all opened files. It has same effect as "File/save al”
[Br | | Compiles the current active file. It has same effect as
"Build/compile’
| Resets the CPU. It has same effect as "Build/reset CPU"
S Runs current active file in normal mode. It has same effect as
"Build/run"
g | | Runs current active file in single step mode. It has same effect as

"Build/step”

Since the MIPS simulator allows an instruction memory of infinite size
(probably bounded by the system on which the simulator runs), only the
"useful" portion of it is displayed. This portion consists of dl the
instructions from the current one (i.e.,, the one whose address in the
instruction memory is the same as the current value of the PC register) to
the last one in the program (i.e., the one with the highest memory address).
The instructions are shown in a top-down scroll list. When there is no file
loaded or the program is empty, the text segment display is also empty.

Emwwnem } 3 2 E EEEESERE RS HEEE D

o Fulree ¥ Debugurr |, ransn: |
ER -t HTE PRCEETRL R

RIS g e e j s R b W EI2LICCL
Lo g Jooowad, e, D 01222000
=1 e I Fam, 1} [[EHEN RN
-1 s [T =N I T I [[BEE RN]
LS el RN B L e Weall ICCE
LS el L=l ST S T Joi LES - e
B (N T = el diesT, [EE L |
=1 -rrnan =n Frl,lir- 1=h4 i
[RNIE L] LT Y Wamao. L
L Eo e | L B] | . oxballIoCs
Lol L o =l wal,Gienl] L1 el o}
I 1 T = felhiws [Y e
-1 d1 a3 [Nt I N B T s 113
SO DT RCC0EED L otao W F oI I00E

1 | |+

2,

Figure 11: Debugger pane

113

Design of a Microsoft Version of MIPS Microprocessor Simulator

3.6.7 Console Window

The console window is used as the standard input, output and error
console. The user inputs data to the running program and sees the results of
the program through this window. Figure 12 shows the "Consol€e" window.

Ewnwmminc: R EEEEERRHEEERERE & =
“aZlEor ZrDehugger | s Censoks |
Fare~ & H=uw nmdher Fossass|

|

Figure 12: Console window

3.6.8 IDE Window Detach Button

IDE window detach button detaches the activated editor, debugger or
console window into a new floating resizable window that can be put
anywhere on the computer screen that is suitable to the user. This enables
the user to display the editor, debugger and console windows
smultaneoudy. In addition, the user can display these windows
simultaneoudy for several running programs when simulating parallel
execution of multiple MIPS programs.

3.6.9 Opened Files Pane

This window displays the names of the opened files. It dlows the user to
display the contents of a selected opened file in the editor, debugger and
console windows by selecting the file. The user selects the file by clicking
on its name using the mouse. When the file is selected, its color changes to
blue. Each opened file has its own text, data and stack segments and CPU
status (register file, system registers etc.) so the user may execute multiple
opened files smultaneously on multiple virtual MIPS processors. Figure 13
shows the "Opened files' pane. When the user selects a new file; its text
segment, data and stack segments, register file, and specia registers are

114

Mohammad A. Mikki, Mohammed R. El-Khoudary

loaded into the corresponding windows (panes) in the GUI. The file is
loaded into the editor window.

Current Files g

[y Mew File 0

[file.s|

D Example.s

[exam.s

Figure 13: Opened files pane

3.6.10 System Registers Pane

This window displays the system registers which are PC, LO, HI, EPC,
BadVAddr, Status and Cause. These registers can not be edited by the user.
They can only be changed by modifying the MIPS program.

3.6.11 Data and Stack Segments Window

The data and stack segments window is at the bottom of the GUI. It
shows the data loaded into the program’s memory and the data of the
program’s stack. The data segment shows the program's data storage in a
scrollable window. The contents of a memory word can be directly edited at
any time by double-clicking on its cell and entering the desired vaue in
hexadecimal format. The data and stack segments window is shown in
Figure 14.

IEHHIHIII:{IMI;I?@&ﬁﬁ@ﬁ@ﬁﬁﬁ@ﬁ@ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
ER S s e E Coal 0 Jaco —anld Cnal7icnll
kL R W L%z L2z] Al _EiE Laazte 0y
Ly e N Lz_a Uzxus Jluy { e Lalalsllis
= 0110 =" M= 1 R e FY [NN I Y
FE [T =54 T4r - ~.if PR |

Figure 14: Data and stack segments window

3.6.12 Register File Window

In an actual MIPS processor, the set of general registers defined by the
MIPS ISA is implemented by a hardware unit. Although the register file is
pat of the CPU, it has a well- defined interface, and so we define it

115

Design of a Microsoft Version of MIPS Microprocessor Simulator

separately here for the purposes of the smulator. There are 32 genera
registers in the MIPS CPU. Register file window shows all these 32
registers using a top-down scroll list. In the register file window each
register's value at the last cycle is displayed in hexadecimal format (default)
or decimal format. The register value format is selected using the two radio
buttons (hexadecimal and decimal) at the bottom of the register file window.
Only one button may be selected at any time. Similar to memory, register
values are editable. If the user tries to edit a register and he/she enters an
illegal value, the smulator will not accept it and will display an error
message in the simulator status pane.

There is a checkbox in front of each register in the register file window.
This checkbox is used to select/unselect the register. Selected registers can
be colored with a specified color when clicking the mouse on the "color
selected registers' button at the bottom of the register file window. The user
can also detach the selected registers by clicking the mouse on the "detach
selected registers' button. This button is aso at the bottom of the register
file window. When the user detaches the selected registers, they are
displayed in a new floating and resizable window that can be put anywhere
on the computer screen that is suitable to the user. This enables the user to
focus on specific registers that he/she selects.

4. MIPS-SIM CODE

In Figure 15 we show a high level pseudo code of MIPS-SIM.

Method main creates an instance of MIPS-SIM and passes the MIPS
assembly file to it. Then, it calls executeFile method. Method MipsSim
loads the MIPS assembly file to be smulated. Method lexicalAnaysis
converts the file into a stream of bytes, analyzes the code, checks for
keywords, registers, and other words, and converts the stream into an XML
file. The lexica Analysis method also builds a symbol table with unresolved
references. The XML fileis passed to syntaxAnalysis method.

syntaxAnaysis method resolves the unresolved references in the symbol
table and transforms the XML file into a tree of instruction objects
(InstructionNodes). Method executeFile runs the code either in a single step
mode or in norma mode. Method executeFile cals method
executelnstruction which runs a single instruction whose address is passed
to it by executeFile method. The main method and the MipsSim method are
pat of the CPU module, the lexicalAnalysis method and syntaxAnaysis
method are part of the lexical and syntax analysis module, the executeFile
method and executel nstruction method are part of the control module.

116

Mohammad A. Mikki, Mohammed R. El-Khoudary

void main () { String syntaxAnaysis () {
MIPS-filename = get file from user; Load memory segments;
MIPS-SIM simulator = new MIPS- Create the symbal table;

SIM (MIPS-filename); Insert values in the symbol table;

simulator.executeFile(); Begin creating atree of instruction

} // end main () Objects: InstructionNodes

ArrayList;
MIPS-SIM = MipsSim Return InstructionNodes to the user or
(AssemblyFileTolL oad) { return errors,

AssemblyFile = AssemblyFileToLead; | } // end syntaxAnaysis()
loadAssembl yFile(AssemblyFile);

lexicd Analysis(); void executeFile () {
if (lexical Analysisresults are correct) { if (execution flag == executable) {
syntaxAnalysis(); Reset program counter to first
if (syntaxAnalysis results are correct) { Instruction in code segment;
Announce that program loaded; Clear stack;
Set execution flag to executable; Clear registers;
} dse{ Clear data segment;
Show errors to the user; while (dill instructions to execute) {
Set execution flag to not executable; executel nstruction(
program counter);
} dse{ // lexicA Anaysisfound errors }
Show errors to the user; Announce that execution execution
Set execution flag to not executabl e; compl eted;
} }
} // end MipsSim } I/ end executeFile
String lexical Analysis () { void executelnstruction (
Check the instructions lexicaly; program counter) {
Extract tokens, Get instruction using program
Create lexemes resultant XML filg counter;
Return XML fileto user or return Get instruction object i.e,
errors, InstructionN ode;
} I/ end lexica Anaysis() Initialize the object and pass

variables;
Execute Object i.e., InstructionNode;
} // end executelnstruction ()

Figure 15: MIPS-SIM pseudo code

5. SIMULATION

In this section we validate and verify the correctness of the design of
MIPS-SIM by presenting some experimental results. The experiments range
from simple to complex and cover various aspects of the smulator. We
design severa MIPS programs to test its various features and capabilities.

117

Design of a Microsoft Version of MIPS Microprocessor Simulator

These programs use most of the features and instructions of the MIPS
assembly language. The results show that our design is correct, robust,
reliable and accurate. These test programs are presented in the following
examples.

Example 5.1: Basic program that sets registers
In this example we test the setting of some of the MIPS registers. Figure
16 shows MIPS assembly code that sets $0, $s1 and $s2 MIPS registers.

text addi $s1,$zero,2
.globl main add $s2,$s0,$s1
main: jr $ra

addi $s0,$zero,1

Figure 16: MIPS assembly code that sets some MIPS registers

When the above code is compiled using MIPS-SIM, the data in the text
window is as follows:

[0x00400024] addi $0,%zero,1 0x20100001 |

[0x00400028] addi $s1,%zero,2 0x20110002 |

[0x0040002c] add $s2,$s0,$s1 0x02119020 R

[0x00400030] jr $ra 0x03e00008 R

As the text code shows, each instruction is translated to its equivalent
MIPS machine code. The example tests the ability of the simulator to
trandate | and R types of the MIPS instructions. It aso sets registers $0,
$sl and $2.

The register pane in the GUI shows the new values of these registers as
displayed in Figure 17.

[IR16 is0y |0x00000001
[|R17 {(s1) |0x00000002
[|R18 (s2) |0x00000003

Figure 17: Display of registersthat are set in example 5.1

As expected, results are correct, setting $s0 to 1, $sl to 2, and $2 the
summation of $s0 and $s1 which is equal to 3.

118

Mohammad A. Mikki, Mohammed R. El-Khoudary

Example 5.2: Program that accesses memory
In this example we test MIPS memory access by reading it and writing
to it. Figure 18 shows MIPS assembly code that reads and writes memory.

text addi $s2,%zero0,50
.globl main sw $s2,0($s0)
main: Iw $s3,0($s0)

[ui $s1,0x1003 jr $ra

ori $s0,$s1,0

Figure 18: MIPS assembly code that accesses MIPS memory

When the above code is compiled using MIPS-SIM, the data in the text
window is as follows:

[0x00400024] Iui $s1,4099 0x3c111003 |
[0x00400028] ori $0,$s1,0 0x36300000 |
[0x0040002c] addi $2,$z6r0,50 0x20120032 |
[0x00400030] sw $s2,0($s0) 0xae120000 |
[0x00400034] Iw $53,0($s0) 0x8e130000 |
[0x00400038] jr $ra 0x03¢00008 R

The following is the content of the updated data segment (memory
locations updated by the execution of the above code):
Data [0x10000000]...[0x10040000] =
0x10030000 0Ox00 Ox00 O0x00 0x32 0x00000032
Stack [Ox7fffeffc] =

The smulator correctly smulates the MIPS processor. We got correct
results. $s0 got the address of memory where $s2 is to be saved. $s3 is
loaded with value saved in the memory location 32h, memory location
specified by $s0 got the value of register $2. Figure 19 shows registers $0
to $s3 in the register pane.

[JR16 (s0) [mx10030000 |
[JR17 (s1) [0x10030000 |
[R18 (s2) [0x00000032 |
[R19 (s3) 00000032 |

Figure 19: Partia view of the register pane for example 5.2

119

Design of a Microsoft Version of MIPS Microprocessor Simulator

Example 5.3: Program that uses branches and jumps
In this example we test jump and branch instructions. Figure 20 shows
MIPS assembly code that includes variations of the jump instruction.

text jal tryltOut
.globl main add $ra,$s5,5zero
main: j exit
addi $s1,$zero,20 tryltOut:
label1: addi $s4,%s0,5
addi $s0,$s0,1 jr $ra
bne $s0,$s1,label 1 exit:
add $s5,%ra, $zero jr $ra

Figure 20: MIPS assembly code that includes jump instructions

After the execution of the above code using MIPS-SIM, $0 to $4
register values are set to those shown in the register pane in Figure 21.
These registers contain the correct and expected values.

[IR16 (sD) 000000014 |
[IR17 (s1) [moo0D0014 |
[IR18 (s2) [1x00000000 |
[IR19 (s3) 00000000 |
[]R20 {s4) [0x000000189

Figure 21: Partia view of the register pane for example 5.3

Example 5.4: Factoria calculation

In this example we run a MIPS program that caculates the factorial of
an integer number that the user enters. Figure 22 shows the MIPS assembly
code for the factoria program.

The factorial program was executed using MIPS-SIM and below is the
result.

Enter an integer:
7

The factorid is:
5040

Several runs of the above code were made with different inputs and the
results were correct.

120

Mohammad A. Mikki, Mohammed R. El-Khoudary

text syscall
.globl main add $a0,%zero,$v1
main: addi $v0,$zero,1
addi $sp,$sp,-4 syscall
sw $ra,0($sp) Iw $ra,0($sp)
la $a0,string0 jr $ra
addi $v0,$zero,4 factorial:
syscal add $s0,$a0,$zero
addi $v0,$zero,5 addi $v1,$zero,1
syscall loop:
add $a0,$v0,%$zero mul $v1,$s0,$v1
add $s7,9v0,$zero addi $s0,$s0,-1
sw $ra,0($sp) bne $s0,%zero,loop
add $a0,$s7,%zero jr $ra
jal factorid .data
Iw $ra,0($sp) space:
la $a0,string2 .word 10
addi $v0,$zero,4 string0: .asciiz "Enter an integer:\n"
stringl: .asdiz "Thefactoria is: \n"

Figure 22: MIPS assembly code that ca culates the factorial

Example 5.5: Summation calculation
In this example we run a MIPS program that calculates the following
summation

Il Qo5

[
i=1
Figure 23 shows the MIPS assembly code for the summation program.
The above program was executed using MIPS-SIM and below is the
result.

Enter an integer:
10

The summationiis.
55

Several runs of the above code were made with different inputs and the
results were correct.

121

Design of a Microsoft Version of MIPS Microprocessor Simulator

text addi $v0,$zero,4
.globl main syscall
main: add $a0,%zero,$v1
addi $sp,$sp,-4 addi $v0,$zero,1
sw $ra,0($sp) syscall
la $a0,string0 addi $s8,$s8,-1
addi $v0,$zero,4 jr $ra
syscall addit:
addi $v0,$zero,5 add $s0,%$a0,$zero
syscal add $v1,$zero,$zero
add $a0,$v0,%$zero loop2:
add $s7,$v0,%zero add $v1,$s0,9v1
sw $ra,0($sp) addi $s0,$s0,-1
add $a0,$s7,%zero bne $s0,%zero,loo0p2
ja addit jr $ra
Iw $ra,0($sp)
la $a20,space .data
addi $v0,$zero,4 Space:
syscall .word 10
la$a0,stringl string0: .asciiz "Enter an integer:\n"
stringl: .asdiiz "The summationis: \n"

Figure 23: MIPS assembly code that calcul ates the summation

Example 5.6: Bubble sort algorithm

In this example we run a MIPS program that implements the bubble sort
algorithm. Figure 24 shows the MIPS assembly code for the MIPS assembly
program of the bubble sort algorithm.

Execution result of the above program is shown below.
2357111317192329
Which is a correct result.
Example 5.7: Matrix multiplication

In this example we run a MIPS program that multiplies two matrices.

Figure 25 shows the MIPS assembly code that multiplies two matrices. The
dimensions of these two matrices are 2x2.

122

Mohammad A. Mikki, Mohammed R. El-Khoudary

data sv $t8, O($t2)
list2: .word 19, 13, 2,7, 11, 5, 23, 29, 17, sw o $t7, 4($t2)
3 no_swap:
sizee .word 10 addi $t0, 1
sp: .asciiz"" addi $t2,4
.globl main j inner
text inner_end:
main: add $t3, $t3,-1
la $a0, lig2 i outer
li $al, 10 outer_end:
ja bubble sort jir $ra
la $al,ligt2 print_integer list:
lw $a0, size move $t1, $al
ja print_integer list i $20
exit: move $t3, $a0
li $v0, 10 print_loop:
syscall beq $t2, $t3, print_loop_end
bubble_sort: Iw $ a0, ($t1)
addi $t3, $a1, -1 li $ vo,1
outer: syscal
bge $zero, $t3, outer_end la $ a0, sep
i $t0,0 li $ V0,4
move $t2, $a0 syscall
inner: addi $t2, $t2, 1
bge $tO, $t3, inner_end addi $t1, $t1, 4
j print_loop
lw $t7, 0($t2) print_loop_end:
lw $t8, 4($t2) jir %ra
ble $t7, $t8, no swap
Figure 24: MIPS assembly code for the bubble sort algorithm.
Execution result of the above program is shown below.
1140 16 59

Which is a correct result.

123

Design of a Microsoft Version of MIPS Microprocessor Simulator

.data
Matrix1: .word 1,5,2, 7
Matrix2: .word 1,5,2, 7
MatrixResult: .word 0,0,0,0
ResultSize:
.word 4
sp: .asciiz' "
.globl main
text
main:
la $s0, Matrix1
la $s1, Matrix2
la $s2, MarixResult
li $to, 2
#Row Count
li $t1, 2
#Column Count
addi $s5, $zero, 0
addi $s6, $0, 0
addi $t2, $zero, 0
addi $t3, $zero, 0
addi $t4, $s2, 16
L1: beg $t2, $0,L2
Iw $s3, ($0)
Iw $4, ($s1)
mul $v0,$s2,$s3
add $s5,$v0,$sb
Sw $s5,($s2)
addi $s0, $0, 4
addi $s1, $s1, 4
addi $t2, $t2, 1
J L1
L2: beg $t3, $t1,L3
addi $t2, $zero, 0

addi $s5, $zero, 0
addi $s2, $2, 4
add $s0, $s6, 0
J L1

L3: beq $2, $t4, FINISH
la $s1, Matrix2
addi $t3, $zero, 0
addi $t2, $zero, 0
addi $s6, $6, 4
J L1

la $al, MatrixResult

Iw $a20, ResultSize

JAL print_integer_list

EXIT
J $ra
print_integer_list:
move $t1, $al
li $t2,0
add $a0, $t3, $zero
print_loop:
beq $t2, $t3,
print_loop_end
Iw $a0, ($t1)
li $v0, 1
syscall
La $a0, sep
li $v0, 4
syscall
addi $t2, $t2, 1
addi $t1, $t1, 4
j print_loop
print_loop_end:
jr $ra

Figure 25: MIPS assembly code for matrix multiplication of 2x2 matrices

6. CONCLUSION

In this paper we describe the implementation of MIPS-SIM (MIPS
Simulator). MIPS-SIM is a GUI, Java-based simulator for the MIPS
assembly language. The MIPS-SIM simulator has been implemented with
characterigtics that are especidly useful to undergraduate computer science
and engineering students and their instructors. MIPS-SIM aso provides a

124

Mohammad A. Mikki, Mohammed R. El-Khoudary

simple debugger and minimal set of operating system services. MIPS-SIM
implements amost the entire MIPS32 assembler-extended instruction set.

We validate and verify the correctness of the design of MIPS-SIM by
presenting some experimental results. The experiments range from simple to
complex and cover various aspects of the simulator. We design several
MIPS programs to test its various features and capabilities. These programs
use most of the features and instructions of the MIPS assembly language.
The results show that our design is correct, robust, reliable and accurate.

We plan to expand MIPS-SIM in the future by continuing implementing
the remaining instruction set. Other plans include improving debugging
support through such features as highlighting of memory/register contents
modified in step-by-step execution, and the ability to undo execution steps.
Other features may be implemented or improved as time and resources
permit.

ACKNOWLEDGEMENT
The authors would like to thank the Islamic University of Gaza, Gaza,
Palestine, for partial financial support of this research.

REFERENCES

[1] Patterson D, Hennessy J., Computer Organization and Design: The
Hardware/Software Interface. 3rd edition, Morgan Kaufmann, San
Francisco, CA, 2005.

[2] Vollmar K., Sanderson P., MARS: An Education- Oriented MIPS
Assembly Language Simulator, SIGCSE' 06, ACM, Mar. 1- 5, 2006,
Houston, Texas, USA.

[3] Wolffe, G., Yurcik, W., Osborne, H., Holliday, M., Teaching Computer
Organization/Architecture With Limited Resources Usng Simulators,
ACM SIGCSE Bulletin 34, (1), 2002, p 176 — 180.

[4] Yurcik, W. (guest editor), ACM Journa on Educational Resources in
Computing, Vol. 1, No. 4, Dec. 2001.

[5] Yurcik, W. (guest editor), ACM Journal on Educational Resources in
Computing, Vol. 2, No. 1, Mar. 2002.

[6] Larus J, SPIM: A MIPS32 simulator:
http://www.cs.wisc.edu/~larug/spim.html

[7] Karamcheti V., Nachos Project Guide, Spring 2000, Department of
Computer Science, Courant Institute of Mathematical Sciences, New
York University, New York, USA.

[8] Branovic, I., Giorgi, R., Martinelli, E., WebMIPS: A New Web-Based
MIPS Smulation Environment for Computer Architecture Education,

125

http://www.cs.wisc.edu/~larus/spim.html

Design of a Microsoft Version of MIPS Microprocessor Simulator

Workshop on Computer Architecture Education, 31st International
Symposium on Computer Architecture, Munich, Germany, 2004.

[9] SmallMIPS: A MIPS Simulator:
http://wiki.cs.uiuc.edu/cs497rej/SmallM I PS

[10] Yehezkd C., Yurcik W. , Pearson M., Armstrong D., 2001- Three
simulator tools for teaching computer architecture: Little Man
computer, and RTLSm., ACM Journa of Educational Resources in
Computing, 1(4): p. 60-80

[11] Brorsson, M., Mipslt - A Smulation and Development Environment
Using Animation for Computer Architecture Education, in Proceedings
of the 29th International Symposium on Computer Architecture, 25-29
May, 2002, Anchorage, Alaska, USA.

[12] MIPS SDE 6.x Programmers’ Guide, Revision 1.14, May 30, 2006,
MIPS Technologies, Inc 1225 Charleston Road Mountain View, CA
94043-1353.

[13] MIPSI - MIPS Simulator: http://www.cs.cornell.edu/People/egs/mipsi/

[14] Vollmar, K., Sanderson, P., 2005- A MIPS Assambly Language
Smulator Designed For Education, The Journal of Computing Sciences
in Colleges, Vol. 21, No. 1.

126

http://wiki.cs.uiuc.edu/cs497rej/SmallMIPS
http://www.cs.cornell.edu/People/egs/mipsi/

