
The Islamic University Journal (Series of Natural Studies and Engineering)
Vol.15, No. 2, pp 95-126, 2007, ISSN 1726-6807, http://www.iugaza.edu.ps/ara/research/

Design of a Microsoft Version of MIPS Microprocessor
Simulator

Mohammad A. Mikki*, Mohammed R. El-Khoudary

Electrical and Computer Engineering Department, Faculty of Engineering ,
ISLAMIC University of Gaza, P.O. Box-108, Gaza, Palestine

Tel: +970-8-2823311, Fax: +970-8-2823310,
E- mail: mmikki@iugaza.edu.ps, m_elkhoudary@hotmail.com

ABSTRACT: We describe the implementation of a MIPS Simulator called MIPS-
SIM. MIPS-SIM is a GUI, Java-based simulator for the MIPS assembly language.
MIPS, the computer architecture is widely used in industry and is the basis of the
popular textbook Computer Organization and Design by David Patterson and John
Hennessy, used at over 400 universities. The third edition of this text (published by
Morgan Kaufmann in 2005) uses standard 32-bit MIPS as the primary teaching
ISA. The MIPS-SIM simulator has been implemented for educational purposes
with characteristics that are especially useful to undergraduate computer science
and engineering students and their instructors who use the above textbook. MIPS-
SIM should be useful in courses such as computer organization and architecture,
assembly language programming, and compiler writing. MIPS-SIM implements
almost the entire MIPS32 assembler-extended instruction set. MIPS-SIM also
provides a simple debugger and minimal set of operating system services.
We test MIPS-SIM simulator by running several MIPS assembly programs.
Results prove the accuracy, correctness, effectiveness and usefulness of MIPS-
SIM.

KEYWORDS
MIPS processors, Simulator, Assembly language, Instruction set, Assembler

 الدقيقةMIPS محاكي لمعالجات تصميم

جات الذي هو عبارة برنامج محاكاة لمعال MIPS-SIMنقوم في هذا البحث بوصف تصميم : الملخص
MIPS . ان برنامجMIPS-SIM مكتوب بلغة Java و يعمل ضمن بيئـة رسـومية للتفاعـل مـع

 عبارة عن هيكلية حاسوب شائع الأستخدام في الصناعة و هو الأساس للكتاب الجامعي MIPS. المستخدم
 للمؤلفين ديفيد باترسون و جون هينيسسـي Computer Organization and Designالمشهور

ن الطبعة الثالثة من هذا الكتاب من دار النشرمورجان ا. جامعة400المستخدم ككتاب مقرر في أكثر من
لقد تم . كهيكلية رئيسية لهيكلية مجموعة التعليمات MIPS32 يستخدم المعالج 2005كوفمان في العام

بخصائص مفيدة لطلاب البكالوريوس في تعليمية لأغراضMIPS-SIM تصميم برنامج المحاكاة
سوب و مدرسيهم على وجه الخصوص الذين يستخدمون الكتاب أعلاه علوم الحاسوب أو هندسة الحا

http://www.iugaza.edu.ps/ara/research/
mailto:mmikki@iugaza.edu.ps
mailto:m_elkhoudary@hotmail.com

Design of a Microsoft Version of MIPS Microprocessor Simulator

 96

 هيكليـة و عمـارة في مساقات مثـل MIPS-SIMيمكن استخدام برنامج . ككتاب دراسي مقرر
 يقوم برنـامج المحاكـاة). compilers(الحاسبات، البرمجة بلغات التجميع، و تصميم المترجمات

MIPS-SIM تعليمات التوسعية لمعالج بمحاكاة كل مجموعة الMIPS32 . كما يقوم برنامج المحاكاة
MIPS-SIM بتوفير أداة بسيطة لتصحيح أخطاء البرمجة كما يحتوي على مجموعـة محـدودة مـن

 و ذلك بتنفيذ عدة برامج MIPS-SIM قمنا باختبار برنامج المحاكاة . البرامج الخدماتية لنظم التشغيل
لقد اظهرت نتائج هذه التجارب دقة و صحة و فعالية و فائدة . MIPS assemblyمكتوبة بلغة

 MIPS-SIM تصميم برنامج المحاكاة

1. INTRODUCTION
The widely-used Computer Organization and Design [1] text, used at

over 400 universities [2] is based on the MIPS architecture and instruction
set. The third edition of this text uses standard 32-bit MIPS as the primary
teaching ISA. Since computer science and computer engineering
departments may not have adequate access to MIPS equipment to support
laboratory activities, software-based MIPS simulators may be used [2].
Additional reasons for using simulation software in an organization and
architecture course are described in [3], and two issues of the ACM Journal
of Educational Resources in Computing were devoted to computer
architecture simulators for educational purposes [4,5]. The SPIM [6]
simulator is used with Computer Organization and Design text and is
described in its Appendix [2].

MIPS is a simple, clean, and efficient RISC computer architecture [1].
The MIPS architecture has several variants that differ in various ways (e.g.,
the MIPS32 architecture supports 32-bit integers and addresses, and the
MIPS64 architecture supports 64-bit integers and addresses).

The architecture of the MIPS computers is simple and regular, which
makes it easy to learn and understand. The processor is a RISC processor
that contains 32 general-purpose 32-bit registers and a well-designed
instruction set that makes it a propitious target for generating code in a
compiler [6]. MIPS processor consists of an integer processing unit (the
CPU) and a collection of coprocessors. Figure 1 shows the general
architecture of the MIPS processor.

In this paper we design a MIPS simulator called MIPS-SIM. MIPS-SIM
is a simulator for the MIPS instruction set. It is a self-contained simulator
that runs MIPS32 assembly language programs. It reads and executes
assembly language programs written for this processor. MIPS-SIM also
provides a simple debugger and minimal set of operating system services.
The primary use of MIPS-SIM is educational. MIPS-SIM simulates

Mohammad A. Mikki, Mohammed R. El-Khoudary

 97

MIPS32 because the third edition of the above mentioned text uses standard
32-bit MIPS as the primary teaching ISA.

Figure 1: General architecture of the MIPS processor

Since many students do not have access to a RISC-based workstation, the
MIPS-SIM simulator allows MIPS assembly-language to be assembled and
run on an IBM PC (or its compatibles) running Microsoft Windows. Each
student is given a simulated machine that models a MIPS processor. The
simulated MIPS machine is a big Java program. This program understands
the format and behavior of MIPS instructions as defined by the MIPS
architecture. When the MIPS-SIM simulator executes a MIPS assembly
program it simulates the behavior of a real MIPS processor. It fetches MIPS
instructions from a simulated machine memory, decodes them and executes
them. It transforms the state of the simulated memory and simulated
machine registers according to the defined meaning of the instructions in the
MIPS architecture specification [7].

Design of a Microsoft Version of MIPS Microprocessor Simulator

 98

Obviously, there are already several very good simulators. The main
difference with our simulator is that it is being implemented in Java and is
intended for academic use.

Although running assembly programs on workstations that contain the
MIPS hardware is significantly faster, we use a simulator because these
workstations are not generally available. Another reason is that these
machines will not persist for many years because of the rapid progress
leading to new and faster computers. In addition, simulators can provide a
better environment for low-level programming than an actual machine
because they can detect more errors and provide more features than an
actual computer [6]. Finally, simulators are useful tools for studying
computers and the programs that run on them. Because they are
implemented in software, not silicon, they can be easily modified to add
new instructions, build new systems such as multiprocessors, or simply to
collect data [6].

The MIPS-SIM simulator implements the educationally important
portions of the MIPS instruction set utilized by third edition of the
Computer Organization and Design textbook [1]. Specifically, the MIPS-
SIM simulator implements complete MIPS instructions, complete
translation of MIPS instructions to MIPS machine language, advanced
exception handling for better and faster debugging, full size data and stack
segments, and support for most pseudo instructions. Pseudo-instructions are
expanded into one or more native MIPS instructions by the assembler.

The MIPS-SIM simulator is written in Java 1.4.2, and runs on IBM PCs
(or its compatibles) under Microsoft Windows environment.

The rest of the paper is organized as follows: Section 2 presents related
work. Section 3 presents the details of the implementation of MIPS-SIM.
Section 4 presents the pseudo code of MIPS-SIM. Section 5 validates the
design of the proposed simulator. Finally, section 6 concludes the paper.

2. RELATED WORK

A number of MIPS simulators have been developed over the years. Most
of these simulators can be classified by a small number of categories: those
designed for research use (e.g. MIPSI), those that focus on certain MIPS
architectural features such as pipelines (e.g. WebMIPS [8], SmallMIPS [9],
RTLSim[10]), those that depend on SPIM (e.g. MIPSASM, TinyMIPS), and
general purpose simulators [2]. Examples of the latter include MipsIt [11]
and SPIM [6]. Most MIPS simulators include features for visualizing and/or
animating MIPS components. SPIM is without doubt the most widely

Mohammad A. Mikki, Mohammed R. El-Khoudary

 99

known and used MIPS simulator, serving both education and industry [2]. In
the following, we describe some of the existing MIPS simulators.

In [9] the authors create a simulator for the MIPS architecture. They call
their instruction set Small-MIPS, which is a subset of MIPS R2000
instruction set, plus some interesting instructions that they added. MIPS
assembler is created as part of the pipeline simulator project. It takes in a
human-readable assembly file and translates it into a data structure that is
only readable to the pipeline simulator. Not all of MIPS2000 instructions
are supported.

In [12] MIPS SDE (Software Development Environment) which is a
cross-development system for MIPS architecture processors is described. It
produces code for a variety of MIPS-based platforms and also simulator
platforms. It is intended for building and debugging statically-linked
applications to run in embedded environments on "bare-metal" CPUs or
light-weight operating systems.

In [13] MIPSI; MIPS simulator is developed. MIPSI is an instruction-
level simulator for the MIPS family of processors. Its main attributes are
simplicity and robustness. MIPSI runs on big or little Endian MIPS boxes
and on Alpha platforms.

In [6] SPIM MIPS simulator is described. SPIM is a self-contained
simulator that runs MIPS R2000/R3000 assembly language programs. It
reads and immediately executes assembly language code for this processor
(it does not execute binary programs). SPIM provides a simple debugger
and minimal set of operating system services. SPIM implements almost the
entire MIPS assembler-extended instruction set for the R2000/R3000.
SPIM implements both a simple, terminal-style interface and a window
interface.

Finally, in [2,14] MARS (MIPS Assembler and Runtime Simulator) is
described. MARS is a lightweight Interactive Development Environment
(IDE) for MIPS assembly language programming. It is intended for
educational-level use with Patterson and Hennessy's Computer Organization
and Design, third edition.

3. DESIGN APPROACH OF MIPS-SIM

In this section we describe in detail the design of the MIPS-SIM
simulator. MIPS-SIM is a friendly GUI, Java-based simulator for the MIPS
assembly language. It supports interactive editing; compilation; execution
and debugging of MIPS assembly programs. MIPS-SIM features
WYSIWYG on-the- spot modification where the user can view and edit the
register file and data and stack segments. MIPS-SIM design is made with

Design of a Microsoft Version of MIPS Microprocessor Simulator

 100

the scalability in mind where the user can easily add new instructions. The
user can also reset the processor just by clicking one button. The simulator
can model parallel execution of multiple MIPS assembly programs on
multiple virtual MIPS processors. MIPS-SIM supports both single step and
normal execution. MIPS-SIM also automatically saves work done by the
user. MIPS-SIM includes a complete user manual.

The MIPS-SIM simulator implements the educationally important
portions of the MIPS instruction set utilized by Computer Organization and
Design, third Edition [1]. Specifically, the MIPS-SIM simulator
implements:

• Entire MIPS32 assembler-extended instruction set.
• Advanced exception handler for better and faster debugging.
• Full size data and stack Segments.
• Support for most pseudo instructions.

The MIPS-SIM program is divided into software modules. Each module
represents a component in the simulator. Modular design simplifies the
deign process, and makes it easy to enhance and debug the code.

Figure 2: Overview of MIPS-SIM modules

Memory
Module

CPU Module Instructions
Module

Control
Module

Lexical
and

Syntax
Analysis
Module

Graphical
User

Interface
(GUI)

Module

Mohammad A. Mikki, Mohammed R. El-Khoudary

 101

An overview of the main components of MIPS-SIM is shown in Figure
2. The CPU module is the core of the simulator. It is in charge of processor
functions where it coordinates the tasks of all other modules. The lexical
and syntax analysis module does lexical and syntax analysis of assembly
files and produces a data structure that represents the MIPS instructions of
the code segment. The instructions module updates the data structure
generated by the lexical and syntax analysis module and classifies
instructions based on their format and prepares them for execution. The
memory module simulates the random access memory (RAM) and the
processor's registers. The control module executes the code. Finally, the
GUI module is used to support the interfacing between the user and the
simulator. It displays the contents of the registers and other useful
information. In the following subsections we describe each module in more
detail.

3.1 CPU Module

CPU module is the core of the simulator. It simulates a real MIPS
processor. CPU module coordinates the tasks of all other modules. The CPU
module supports the following functions. First, setting and displaying the
values of the registers in the register file. Register values are displayed in
the register file pane in the GUI. Second, setting/Resetting and displaying
the values of the special registers LO, HI, PC, EPC, BadVAddr, Status and
cause registers. Third, resetting the CPU to its initial state. Fourth, setting
and displaying the code (text), data and stack segments. Fifth, accessing and
updating memory locations. Sixth, displaying memory locations in the
memory pane in the GUI. Seventh, editing the files in the editor window.
Eighth, handling exceptions. Ninth, modeling of parallel virtual MIPS
processors, i.e., the MIPS-SIM runs as a parallel machine with multiple
MIPS processors. In this mode, multiple MIPS assembly programs could
run simultaneously on multiple virtual MIPS processors.

The UML diagram of the CPU module is shown in Figure 3. In Figure 3
MipsCPU class extends an Observable class; implements an Observer class,
and contains a RegisterController class. These classes do the whole module
interaction coordination. For interactions from MipsCPU to GUI, the
Observable class is used.

Design of a Microsoft Version of MIPS Microprocessor Simulator

 102

Figure 3: UML diagram of the CPU module

The GUI components register themselves in the MipsCPU Observable,

and wait for it to synchronize their states. For memory module, the CPU
registers GUI components in the Observable class of the memory module so
that memory may report changes in its state to CPU module anytime. For
text (code) segment, the CPU registers GUI components in the Observable
class of the control module so that text segment may report changes in its
state to CPU module anytime. Using the RegisterController, the register file
can get values from the RegisterController to synchronize its state anytime.
The RegisterController is notified to get values from the register file
whenever a change in these registers occurs.

+registerDataSegment(in dataSegment : RandomAccessMemory)
+registerControlUnit(in ControlUnit : ControlUnit)
+registerInstructionsFactory(in instructionsFactory : InstructionsCacheProxy)
+registerRegisterFile(in registerFile : RegisterFile)
+registerSymbolTableManager(in symbolTableManager : SymbolTableManager)
+registerLexicalAnalyzer(in lexicalAnalyzer : LexicalAnalyzer)
+registerSyntexAnalyzer(in syntaxAnalyzer : SyntaxAnalyzer)
+registerRegisterController(in graphical : Object) : RegisterController
+loadProgram(in path : String)
+compileProgram()
+getLexicalAnalysis() : StringBuffer
+getSyntaxAnalysis() : ArrayList
+getInstruction(in instruction : String) : InstructionNode
+getSymbolLocation(in label : InstructionNode) : InstructionNode
+getMemoryWord(in address : long) : MemoryWord
+getProgramCounter() : String
+getRegisterValue(in registerNumber : int) : String
+getMaxExecutionTime() : long
+getSyscallIn() : String
+getSyscallOut() : String
+getRegisterController() : RegisterController
+setRegisterValue(in registerNumber : int, in registerValue : String)
+setSymbol(in label : String, in location : InstructionNode)
+setMaxExecutionTime(in timeInMillis : long)
+setProgramCounter(in newLocation : InstructionNode)
+setSyscallOut(in sysout : String)
+setSyscallIn(in sysin : String)
+advanceProgramCounter()
+execute()
+executeSingle()
+resetCPU()
+synchronizeState()
+sysCall(in sysCallNo : int)

-dataSegment : RandomAccessMemory
-registerFile : RegisterFile
-instructionFactory : InstructionsCacheProxy
-controlUnit : ControlUnit
-symbolTableManager : SymbolTableManager
-lexicalAnalyzer : LexicalAnalyzer
-syntaxAnalyzer : SyntaxAnalyzer
-sysCallIn : String
-sysCallOut : String
-RegisterController : RegisterController

MipsCPU
+notifyObservers()
+registerObserver(in observer : Observer)
+removeObserver(in observer : Observer)

-observers : ArrayList
Observable

+synchronizeState()

«interface»
Observer

+getRegisterValues() : String []
+setRegisterValues() : String []

-registerFields : Object []
RegisterController

Mohammad A. Mikki, Mohammed R. El-Khoudary

 103

3.2 Lexical and Syntax Analysis Module
Compilers use two or more phases of analysis to convert code from

source format into target format. MIPS-SIM implements two of these phases
which are the lexical (linear) analysis phase and the syntax analysis phase.
MIPS-SIM ignores the semantic analysis phase because it is not necessary
in assemblers. Lexical and syntax analysis are implemented within the
lexical and syntax analysis module.

Lexical and syntax analysis module consists of two analyzers: lexical
analyzer and syntax analyzer. Lexical and syntax analysis module builds a
valid structured code representation of the MIPS assembly instructions that
is ready to be executed.

Lexical analyzer converts code into a stream of characters, and then
analyzes it. It checks keywords, constants, and extracts undefined words
used in the code and reports errors in the code (undefined keywords,
undefined numbers). The lexical analyzer is in charge of analyzing the code,
checking for lexical errors, and preparing the code for execution. Syntax
analyzer takes the result generated by the lexical analyzer and checks the
correctness of keywords, variables, and constants. It reports syntax errors in
the code if they exist.

The UML diagram of the lexical and syntax analysis module is shown in
Figure 4. In Figure 4; the FileLoader class loads a specified MIPS assembly
file (passed to it by the CPU module as a StringBuffer) into the text (code)
segment and prepares it for compilation, execution and debugging. It then
passes it to the lexical analyzer. The LexicalAnalyzer class first removes all
characters that are not part of the code including arrows, comas, dots, and
white-spaces to prepare the code for the lexical analysis. Lexical analyzer
then starts the analysis process by breaking code into tokens separated by
characters (e.g. arrows, comas, dots, and white-spaces). It then passes these
tokens to the token identifier. After the identification of every token, the
lexical analyzer generates a formatted XML file to be used by the syntax
analyzer. Each line in the XML file corresponds to one MIPS instruction in
the assembly file. The lexical analyzer does not check the correctness of the
structure of the generated XML file. The lexical analyzer also generates a
symbol table (implemented through the SymbolTableManager class) that
contains unresolved references (labels and global variables). It is the
responsibility of the syntax analyzer to resolve these references. Each entry
in the symbol table consists of three values: unresolved reference, type
(CODE_LOCATION or MEMORY_LOCATION), and the physical
location in memory.

Design of a Microsoft Version of MIPS Microprocessor Simulator

 104

Syntax analyzer (implemented through the SyntaxAnalyzer class) uses
the XML file generated by the lexical analyzer as its input. It searches this
file for the pre execution block which exists before or after the code. This
block is used to initialize memory data segment. After the syntax analyzer
finds this block; it saves all its values in the memory data segment. If there
is a label in this block, the syntax analyzer adds it to the symbol table with
the type MEMORY_LOCATION. After all data segment labels and values
are inserted in the symbol table, the syntax analyzer begins fetching
instruction lines from the XML file, one by one. It then creates
InstructionNode ArrayList (one InstructionNode per MIPS instruction) and
fills their fields with data from the corresponding line in the XML file. Any
pseudo instruction is converted into MIPS real instructions (implemented
through the PsuedoInstruction class). Branching and jumping labels in the
XML file are added to the symbol table with the type CODE_LOCATION.
As an output of the syntax analyzer, an ArrayList structure of
InstructionNode is generated.

Figure 4: UML diagram of the lexical and syntax analysis module

+loadProgram(in path : String) : StringBuffer
-removeUnwantedCharacters()
+identifyToken(in token : String) : int
-isKeyWord(in token : String) : boolean
-isConstant(in token : String) : boolean
-isOther(in token : String) : boolean
-isRegister(in token : String) : boolean
+analyzeProgram() : StringBuffer

-fileLoader : FileLoader
-currentProgram : StringBuffer

LexicalAnalyzer

+loadProgram(in String path)
+getCurrentFile() : StringBuffer

-currentFile : File
FileLoader

+setCodeFromLexicalAnalyzer(in code : StringBuffer)
-checkInstructionSyntax(in instruction : InstructionNode)
-addSymbol(in label : String, in location : InstructionNode)
+analyzeCode() : ArrayList

-fromLexicalAnalyzer : StringBuffer
SyntaxAnalyzer

+convertToInstructions()
+setPreviousNode(in previousNode : InstructionNode)
+getPreviousNode() : InstructionNode

-substituteInstructions : String
PseudoInstruction

+addSymbol(in label : String, in type : int, in location : long)
+getSymbol(in label : String) : long

-symbolTable : String [][]

SymbolTableManager

Mohammad A. Mikki, Mohammed R. El-Khoudary

 105

The syntax analyzer then resolves all unresolved references in the
symbol table. All references are given their physical memory locations.

3.3 Instructions Module

The instructions module classifies instructions based on their format and
prepares them for execution. It initializes the instruction execution units and
caches (puts instruction executors objects for fast retrieval in the instruction
cache proxy implemented by the InstructionCacheProxy class). The
instruction module takes the InstructionNode ArrayList as an input, updates
it and builds five execution units (through the ITypeInstruction,
RTypeInstruction, JTypeInstruction, NULLInstruction, and Syscall classes)
as a result.

The UML diagram of the instructions module is shown in Figure 5. In
Figure 5, InstructionsFactory class is responsible for getting the desired
instruction from the InstructionNode ArrayList. This is done by the
reflection technology. Reflection technology uses lookup in the file system
to find the class names (ITypeInstruction, RTypeInstruction,
JTypeInstruction, NULLInstruction, and Syscall classes) and to initiate
instances of them.

InstructionsCacheProxy class is used to speed the above process. It is
used to save much of the time consumed on reflection process mentioned
above. The InstructionsCacheProxy does this by being responsible for
storing instructions in a table in main memory (RAM) for fast retrieval upon
request. So after it receives requests, it looks up its own table (which is
resident in RAM). If the instruction object is already there, it is returned. If
not, InstructionsCacheProxy uses the InstructionsFactory to reflect this
instruction from the storage device.

The architecture of the MIPS instruction is defined using the
MIPSInstruction interface which is implemented through five classes:
ITypeInstruction, RTypeInstruction, JTypeInstruction, NULLInstruction,
and Syscall. These classes further process and update the instruction node
and prepare the instruction for execution by the control module.

3.4 Memory Module

The simulator must implement a memory abstraction for the simulated
MIPS processor. For a real MIPS processor, memory addresses are 32-bit
numbers, ranging from 0x00000000 to 0xFFFFFFFF, where each individual
address refers to a byte in memory (thus is byte addressable). Memory holds
both instructions and data. Memory for an executing program is divided into
segments according to function – text (code), static data, heap, and stack.

Design of a Microsoft Version of MIPS Microprocessor Simulator

 106

For our simulated processor, the word size is 32 bits, or equivalently, 4
bytes. The main memory module supports the following functions:

• Modeling the text (code), data and stack segments.
• Displaying the text (code), data and stack segments in their

corresponding panes in the GUI.
• Reading/writing a memory word/byte at a specified memory address.
• Resetting memory to its empty state.

Figure 5: UML diagram of the instructions module

The UML diagram of the memory module is shown in Figure 6. The
memory module consists of two sub-modules. The first sub-module is
Random Access Memory (RAM). RAM contains two segments; data
segment and stack segment. RAM is implemented through the
RandomAccessMemory class. The second sub-module is the register file
which holds both general purpose registers and system registers. The
register file module is implemented through the RegisterFile class. The
Observable class in Figure 6 is included for GUI purposes. This class is in
charge of notifying the GUI component that uses it of any change in
memory locations and registers values.

+getInstructionFactory() : InstructionsFactory
+getInstruction(in Instruction : String) : MIPSInstruction

-InstructionsFactory : InstructionsFactory
InstructionsFactory

-$ingleInstance 1

1

«instance»

«exception»
InstructionNotFoundException

<<throws>>

+checkSyntax() : String
+execute()
+getAssimblyBitString() : String
+getInstructionType() : int

«interface»
MIPSInstruction

+checkSyntax() : String
+execute()
+getAssemblyBitString() : String
+getInstructionType() : int

-upperPart : String
-parameters : ArrayList

ITypeInstruction

+checkSyntax() : String
+execute()
+getAssemblyBitString() : String
+getInstructionType() : int

-upperPart : String
-lowerPart : String
-parameters : ArrayList

RTypeInstruction

+checkSyntax() : String
+execute()
+getAssemblyBitString() : String
+getInstructionType() : int

-upperPart : String
-parameters : ArrayList

JTypeInstruction

+checkSyntax() : String
+execute()
+getAssemblyBitString() : String
+getInstructionType() : int

-upperPart : String
-parameters : ArrayList

NULLInstruction

+getInstruction(in Instruction : String) : MIPSInstruction
+clearCache()

-Cache : Hashmap
-instructionFactory : InstructionsFactory

InstructionsCacheProxy

1
*

+checkSyntax() : String
+execute()
+getAssemblyBitString() : String
+getInstructionType() : int

-assembly : String
-parameters : ArrayList

Syscall

Mohammad A. Mikki, Mohammed R. El-Khoudary

 107

Figure 6: UML diagram of the memory module

3.5 Control Module
Control module is in charge of executing the code in either single step

mode (for debugging purposes) or normal mode. Control Unit uses an
instruction pointer to point to the instruction being executed. After
executing an instruction; the control module increments the instruction
pointer to point to the next instruction. Control module insures that no
execution violations occur, and that the execution is not taking too long
time. Program execution taking too long may indicate that the program
entered an infinite loop. The control module takes the InstructionNode
ArrayList as an input and executes the corresponding instruction of each
InstructionNode object.

The UML diagram of the control module is shown in Figure 7. Control
module consists of three units: the ControlUnit class, the InstructionNode
class, and the Observable interface. ControlUnit class manages the text
segment represented by InstructionNode ArrayList. ControlUnit may clear
the text segment through invoking the clearTextSegment method. The
InstructionNode class is the main unit of the InstructionNode ArrayList tree.
It is used by the syntax analyzer to create the InstructionNode objects. The
ControlUnit class extends the Observable interface so that GUI components

+insertOrGet(in requestedLocation : long) : MemoryWord
+setRightWord(in rightChild : MemoryWord)
+setLeftWord(in leftChild : MemoryWord)
+setByte(in byteNo : int, in value : String)
+setAddress(in address : long)
+getByte() : String
+getAddress() : long
+getRightWord() : MemoryWord
+getLeftWord() : MemoryWord

-leftChild : MemoryWord
-rightChil : MemoryWord
-address : long
-word : String []

MemoryWord

+getMemoryWord(in address : long) : MemoryWord
+resetRAM()

-rootWord : MemoryWord
RandomAccessMemory

1
*

+notifyObservers()
+registerObserver(in observer : MemoryObserver)
+removeObserver(in observer : MemoryObserver)

-observers : ArrayList
Observable

+getRegisterValue(in registerNumber : int) : String
+getSystemRegisterValue(in registerNumber : int) : String
+setRegisterRegisterValue(in registerNumber : int, in registerValue : String)
+setSystemRegisterValue(in registerNumber : int, in registerValue : String)
+isSystemRegister(in registerNumber : int) : boolean
+isRegister(in registerNumber : int) : boolean
+clearRegisters()
+getRegisterBaseAddress(in registerNumber : int) : long
+getSystemRegisterBaseAddress(in registerNumber : int) : long

-registers : Hashmap
-systemRegisters : Hashmap
-registersBaseAddress : long
-systemRegistersBaseAddress : long

RegisterFile

«exception»
RegisterNotFoundException

<<throws>>
«exception»

MemoryOutOfBoundException

<<throws>>

«exception»
InvalidDataException

<<throws>>

+synchronizeState()

«interface»
Observer

Design of a Microsoft Version of MIPS Microprocessor Simulator

 108

can update the content of text segment pane automatically when any change
in the text segment occurs.

Figure 7: UML diagram of the control module

3.6 Graphical User Interface (GUI) Module

The GUI module provides the interfacing between the user and the
simulator. It displays the status of the simulator. The GUI provides the user
with ways to control the basic functions of the MIPS-SIM simulator. The
GUI can be launched by executing the MIPS-SIM program. To close the
GUI, one just needs to select the "Exit" option from the "file" submenu.
Using the GUI, the user can load, run, step, restart and exit a MIPS
assembly program. GUI enables users to reset/retrieve the status of the
MIPS processor. This allows one not only to efficiently run the code and
view the results, but also to debug the code and to be able to see exactly

+getRootInstruction() : InstructionNode
+getCurrentInstruction() : InstructionNode
+getMaxExecutionTim e() : long
+setMaxExecutionT ime(in timeInMillis : long)
+setTextSegment(in textSegment : ArrayList)
+advanceInstructionPointer()
+execute()
+executeSingle()
+clearTextSegment()

-textSegment : ArrayList
-instructionPointer : InstructionNode
-maxExecutionTime : long

ControlUnit

+getInstructionType() : int
+getAssemblyBitString() : String
+getInstruction() : String []
+checkSyntax() : String
+execute()

-instruction : String
-parameters : String []

InstructionNode

+notifyObservers()
+registerO bserver(in observer : O bserver)
+removeObserver(in observer : O bserver)

-observers : ArrayList

Observable

Mohammad A. Mikki, Mohammed R. El-Khoudary

 109

how the MIPS processor processes each instruction at any cycle, if
necessary. In addition, MIPS-SIM simulator provides several windows that
show what is happening in several areas of the simulated machine. The
GUI module supports the following functions:

• Initiating the simulator with a reset MIPS processor and a new MIPS
assembly file.

• Providing menu bar for file operations.
• Providing button toolbar for mouse-activated program operations.
• Initializing and displaying the following windows: Integrated

Development Environment (IDE) Window, opened files window,
register file window, system register file window, and data and stack
segments window.

• Setting listeners for all windows and buttons of the GUI.
• Providing a text editor to create/modify files.
When the user invokes MIPS-SIM, he/she gets the graphical user

interface shown in Figure 8. There are twelve main components (panes) of
the GUI that the simulator displays. These panes are: menu bar, button
toolbar, simulator status bar, integrated development environment (IDE)
bar, editor window, debugger (text segment) window, console window
(program input and output window), IDE window detach button, opened
files pane, system registers pane, data and stack segments pane, and register
file pane. The following subsections describe each of these windows
(panes).

3.6.1 Menu Bar

MIPS-SIM menu bar is located at the top of the GUI. It allows users to
handle file operations; view different panes; compile and run files; and get
user help.

The submenus of the menu bar are described in Table 1.

3.6.2 Button Toolbar

Button toolbar includes icons that may be used using the mouse as an
alternative to using the menu bar. Figure 9 shows the button toolbar icons.
These icons are described in Table 2.

3.6.3 Simulator Status Bar

Simulator status pane is used to display messages. When the assembler
encounters errors, it displays them within this pane. This pane also displays
the current status of the simulator. It also shows the state of operations

Design of a Microsoft Version of MIPS Microprocessor Simulator

 110

performed by the simulator (e.g., opening a file, saving a file, compiling a
file, etc.).

Figure 8: MIPS-SIM Graphical User Interface (GUI)

Figure 9: Button toolbar icons

3.6.4 Integrated Development Environment (IDE) Bar

The IDE bar enables users to select one of the following windows: editor,
debugger, and console. All of these windows are empty when the user starts
the simulator. IDE enables users to interface with the running programs
through these windows. These three windows are described in more detail in
the following three subsections.

Mohammad A. Mikki, Mohammed R. El-Khoudary

 111

3.6.5 Editor Window
The MIPS-SIM editor is an ASCII-oriented text editor that operates

much like Microsoft Window's Notepad. The button toolbar icons are used
with the editor. Figure 10 shows the editor window.

Figure 10: Editor pane

3.6.6 Debugger (text segment) Window

The text segment window shows instructions both from user's program
and the system code that is loaded automatically when MIPS-SIM is
running. For each instruction, the address (displayed in hexadecimal format
between square brackets), machine code (in hexadecimal format), and
assembly language version of the instruction are displayed. A breakpoint
can be set at any instruction. When stepping through program execution, a
pointer points to the next instruction to be executed. This is useful for
debugging purpose. Figure 11 shows the debugger window.

Design of a Microsoft Version of MIPS Microprocessor Simulator

 112

Table 1: Description of the submenus of the menu bar
Submenu Submenu Options Description

Open Opens an existing assembly file. When a new file is
opened, the MIPS processor is reset (all register
contents are cleared and PC is set to 0x00400024
which is the address of the first instruction in the
text (code) segment

New Creates a new assembly file
Save Saves the modification of the opened and selected

file
Save all Saves the modification of all opened files

File

Exit Exits the simulator. A dialog box will be displayed
to request user confirmation

Opened files pane Display/hide the pane that shows all opened files
IDE pane Display/hide IDE pane (debugger, editor, and

console panes)
Register file
Window

Display/hide register file window

System registers
pane

Display/hide system registers pane

View

Data and stack
Segments Window

Display/hide data and stack segments window

Compile Compile and assemble the program. A successful
assembly causes the debugger pane to be displayed.
An unsuccessful assembly displays appropriate
error messages and the line number of the
instruction causing the error in the console window

Reset CPU Resets the processor for the loaded file: Registers in
the register file are cleared, and PC is set to
0x00400024

Run Runs the loaded program from the state it is
currently in (from the instruction pointed to by the
PC) and until it halts

Build

Step Runs the loaded program for only one cycle. It
simulates a single instruction. The executed
instruction is the one pointed to by the PC. This
feature is useful for debugging and testing purposes

User manual Shows the user manual Help
About MIPS-SIM Displays some information about the version of the

MIPS-SIM

Mohammad A. Mikki, Mohammed R. El-Khoudary

 113

Table 2: Description of button toolbar icons
Icon Description

Creates a news file. It has same effect as "File/new"

Opens an existing file. It has same effect as "File/open"

Saves the current active file. It has same effect as "File/save"

Saves all opened files. It has same effect as "File/save all"

Compiles the current active file. It has same effect as
"Build/compile"

Resets the CPU. It has same effect as "Build/reset CPU"

Runs current active file in normal mode. It has same effect as
"Build/run"

Runs current active file in single step mode. It has same effect as
"Build/step"

Since the MIPS simulator allows an instruction memory of infinite size

(probably bounded by the system on which the simulator runs), only the
"useful" portion of it is displayed. This portion consists of all the
instructions from the current one (i.e., the one whose address in the
instruction memory is the same as the current value of the PC register) to
the last one in the program (i.e., the one with the highest memory address).
The instructions are shown in a top-down scroll list. When there is no file
loaded or the program is empty, the text segment display is also empty.

Figure 11: Debugger pane

Design of a Microsoft Version of MIPS Microprocessor Simulator

 114

3.6.7 Console Window
The console window is used as the standard input, output and error

console. The user inputs data to the running program and sees the results of
the program through this window. Figure 12 shows the "Console" window.

Figure 12: Console window

3.6.8 IDE Window Detach Button

IDE window detach button detaches the activated editor, debugger or
console window into a new floating resizable window that can be put
anywhere on the computer screen that is suitable to the user. This enables
the user to display the editor, debugger and console windows
simultaneously. In addition, the user can display these windows
simultaneously for several running programs when simulating parallel
execution of multiple MIPS programs.

3.6.9 Opened Files Pane

This window displays the names of the opened files. It allows the user to
display the contents of a selected opened file in the editor, debugger and
console windows by selecting the file. The user selects the file by clicking
on its name using the mouse. When the file is selected, its color changes to
blue. Each opened file has its own text, data and stack segments and CPU
status (register file, system registers etc.) so the user may execute multiple
opened files simultaneously on multiple virtual MIPS processors. Figure 13
shows the "Opened files" pane. When the user selects a new file; its text
segment, data and stack segments, register file, and special registers are

Mohammad A. Mikki, Mohammed R. El-Khoudary

 115

loaded into the corresponding windows (panes) in the GUI. The file is
loaded into the editor window.

Figure 13: Opened files pane

3.6.10 System Registers Pane

This window displays the system registers which are PC, LO, HI, EPC,
BadVAddr, Status and Cause. These registers can not be edited by the user.
They can only be changed by modifying the MIPS program.

3.6.11 Data and Stack Segments Window

The data and stack segments window is at the bottom of the GUI. It
shows the data loaded into the program’s memory and the data of the
program’s stack. The data segment shows the program's data storage in a
scrollable window. The contents of a memory word can be directly edited at
any time by double-clicking on its cell and entering the desired value in
hexadecimal format. The data and stack segments window is shown in
Figure 14.

Figure 14: Data and stack segments window

3.6.12 Register File Window

In an actual MIPS processor, the set of general registers defined by the
MIPS ISA is implemented by a hardware unit. Although the register file is
part of the CPU, it has a well- defined interface, and so we define it

Design of a Microsoft Version of MIPS Microprocessor Simulator

 116

separately here for the purposes of the simulator. There are 32 general
registers in the MIPS CPU. Register file window shows all these 32
registers using a top-down scroll list. In the register file window each
register's value at the last cycle is displayed in hexadecimal format (default)
or decimal format. The register value format is selected using the two radio
buttons (hexadecimal and decimal) at the bottom of the register file window.
Only one button may be selected at any time. Similar to memory, register
values are editable. If the user tries to edit a register and he/she enters an
illegal value, the simulator will not accept it and will display an error
message in the simulator status pane.

There is a checkbox in front of each register in the register file window.
This checkbox is used to select/unselect the register. Selected registers can
be colored with a specified color when clicking the mouse on the "color
selected registers" button at the bottom of the register file window. The user
can also detach the selected registers by clicking the mouse on the "detach
selected registers" button. This button is also at the bottom of the register
file window. When the user detaches the selected registers, they are
displayed in a new floating and resizable window that can be put anywhere
on the computer screen that is suitable to the user. This enables the user to
focus on specific registers that he/she selects.

4. MIPS-SIM CODE

In Figure 15 we show a high level pseudo code of MIPS-SIM.
Method main creates an instance of MIPS-SIM and passes the MIPS

assembly file to it. Then, it calls executeFile method. Method MipsSim
loads the MIPS assembly file to be simulated. Method lexicalAnalysis
converts the file into a stream of bytes, analyzes the code, checks for
keywords, registers, and other words, and converts the stream into an XML
file. The lexicalAnalysis method also builds a symbol table with unresolved
references. The XML file is passed to syntaxAnalysis method.

syntaxAnalysis method resolves the unresolved references in the symbol
table and transforms the XML file into a tree of instruction objects
(InstructionNodes). Method executeFile runs the code either in a single step
mode or in normal mode. Method executeFile calls method
executeInstruction which runs a single instruction whose address is passed
to it by executeFile method. The main method and the MipsSim method are
part of the CPU module, the lexicalAnalysis method and syntaxAnalysis
method are part of the lexical and syntax analysis module, the executeFile
method and executeInstruction method are part of the control module.

Mohammad A. Mikki, Mohammed R. El-Khoudary

 117

void main () {
 MIPS-filename = get file from user;
 MIPS-SIM simulator = new MIPS-
 SIM (MIPS-filename);
 simulator.executeFile();
} // end main ()

MIPS-SIM = MipsSim
 (AssemblyFileToLoad) {
 AssemblyFile = AssemblyFileToLead;
 loadAssemblyFile(AssemblyFile);
 lexicalAnalysis();
 if (lexicalAnalysis results are correct) {
 syntaxAnalysis();
 if (syntaxAnalysis results are correct) {
 Announce that program loaded;
 Set execution flag to executable;
 } else {
 Show errors to the user;
 Set execution flag to not executable;
 }
 } else { // lexicalAnalysis found errors
 Show errors to the user;
 Set execution flag to not executable;
 }
} // end MipsSim

String lexicalAnalysis () {
 Check the instructions lexically;
 Extract tokens;
 Create lexemes resultant XML file;
 Return XML file to user or return
 errors;
} // end lexicalAnalysis()

String syntaxAnalysis () {
 Load memory segments;
 Create the symbol table;
 Insert values in the symbol table;
 Begin creating a tree of instruction
 Objects: InstructionNodes
 ArrayList;
 Return InstructionNodes to the user or
 return errors;
} // end syntaxAnalysis()

void executeFile () {
 if (execution flag == executable) {
 Reset program counter to first
 Instruction in code segment;
 Clear stack;
 Clear registers;
 Clear data segment;
 while (still instructions to execute) {
 executeInstruction(
 program counter);
 }
 Announce that execution execution
 completed;
 }
} // end executeFile

void executeInstruction (
 program counter) {
 Get instruction using program
 counter;
 Get instruction object i.e.,
 InstructionNode;
 Initialize the object and pass
 variables;
 Execute Object i.e., InstructionNode;
} // end executeInstruction ()

Figure 15: MIPS-SIM pseudo code

5. SIMULATION

In this section we validate and verify the correctness of the design of
MIPS-SIM by presenting some experimental results. The experiments range
from simple to complex and cover various aspects of the simulator. We
design several MIPS programs to test its various features and capabilities.

Design of a Microsoft Version of MIPS Microprocessor Simulator

 118

These programs use most of the features and instructions of the MIPS
assembly language. The results show that our design is correct, robust,
reliable and accurate. These test programs are presented in the following
examples.

Example 5.1: Basic program that sets registers

In this example we test the setting of some of the MIPS registers. Figure
16 shows MIPS assembly code that sets $s0, $s1 and $s2 MIPS registers.

.text
.globl main
main:
 addi $s0,$zero,1

addi $s1,$zero,2
add $s2,$s0,$s1
jr $ra

Figure 16: MIPS assembly code that sets some MIPS registers

When the above code is compiled using MIPS-SIM, the data in the text
window is as follows:

[0x00400024] addi $s0,$zero,1 0x20100001 I
[0x00400028] addi $s1,$zero,2 0x20110002 I
[0x0040002c] add $s2,$s0,$s1 0x02119020 R
[0x00400030] jr $ra 0x03e00008 R

As the text code shows, each instruction is translated to its equivalent

MIPS machine code. The example tests the ability of the simulator to
translate I and R types of the MIPS instructions. It also sets registers $s0,
$s1 and $s2.

The register pane in the GUI shows the new values of these registers as
displayed in Figure 17.

Figure 17: Display of registers that are set in example 5.1

As expected, results are correct, setting $s0 to 1, $s1 to 2, and $s2 the
summation of $s0 and $s1 which is equal to 3.

Mohammad A. Mikki, Mohammed R. El-Khoudary

 119

Example 5.2: Program that accesses memory
 In this example we test MIPS memory access by reading it and writing

to it. Figure 18 shows MIPS assembly code that reads and writes memory.

.text
.globl main
main:
 lui $s1,0x1003
 ori $s0,$s1,0

addi $s2,$zero,50
sw $s2,0($s0)
lw $s3,0($s0)
jr $ra

Figure 18: MIPS assembly code that accesses MIPS memory

When the above code is compiled using MIPS-SIM, the data in the text
window is as follows:

[0x00400024] lui $s1,4099 0x3c111003 I
[0x00400028] ori $s0,$s1,0 0x36300000 I
[0x0040002c] addi $s2,$zero,50 0x20120032 I
[0x00400030] sw $s2,0($s0) 0xae120000 I
[0x00400034] lw $s3,0($s0) 0x8e130000 I
[0x00400038] jr $ra 0x03e00008 R

The following is the content of the updated data segment (memory
locations updated by the execution of the above code):
Data [0x10000000]...[0x10040000] =
0x10030000 0x00 0x00 0x00 0x32 0x00000032
Stack [0x7fffeffc] =

The simulator correctly simulates the MIPS processor. We got correct
results: $s0 got the address of memory where $s2 is to be saved. $s3 is
loaded with value saved in the memory location 32h, memory location
specified by $s0 got the value of register $s2. Figure 19 shows registers $s0
to $s3 in the register pane.

Figure 19: Partial view of the register pane for example 5.2

Design of a Microsoft Version of MIPS Microprocessor Simulator

 120

Example 5.3: Program that uses branches and jumps
In this example we test jump and branch instructions. Figure 20 shows

MIPS assembly code that includes variations of the jump instruction.

.text
.globl main
main:
 addi $s1,$zero,20
label1:
 addi $s0,$s0,1
 bne $s0,$s1,label1
 add $s5,$ra,$zero

 jal tryItOut
 add $ra,$s5,$zero
 j exit
tryItOut:
 addi $s4,$s0,5
 jr $ra
exit:
 jr $ra

Figure 20: MIPS assembly code that includes jump instructions

After the execution of the above code using MIPS-SIM, $s0 to $s4
register values are set to those shown in the register pane in Figure 21.
These registers contain the correct and expected values.

Figure 21: Partial view of the register pane for example 5.3

Example 5.4: Factorial calculation

In this example we run a MIPS program that calculates the factorial of
an integer number that the user enters. Figure 22 shows the MIPS assembly
code for the factorial program.

The factorial program was executed using MIPS-SIM and below is the
result.

Enter an integer:
7
The factorial is:
5040

Several runs of the above code were made with different inputs and the
results were correct.

Mohammad A. Mikki, Mohammed R. El-Khoudary

 121

.text

.globl main
main:
 addi $sp,$sp,-4
 sw $ra,0($sp)
 la $a0,string0
 addi $v0,$zero,4
 syscall
 addi $v0,$zero,5
 syscall
 add $a0,$v0,$zero
 add $s7,$v0,$zero
 sw $ra,0($sp)
 add $a0,$s7,$zero
 jal factorial
 lw $ra,0($sp)
 la $a0,string2
 addi $v0,$zero,4

 syscall
 add $a0,$zero,$v1
 addi $v0,$zero,1
 syscall
 lw $ra,0($sp)
 jr $ra
factorial:
 add $s0,$a0,$zero
 addi $v1,$zero,1
loop:
 mul $v1,$s0,$v1
 addi $s0,$s0,-1
 bne $s0,$zero,loop
 jr $ra
.data
 space:
.word 10
 string0: .asciiz "Enter an integer:\n"
 string1: .asciiz "The factorial is: \n"

Figure 22: MIPS assembly code that calculates the factorial

Example 5.5: Summation calculation

In this example we run a MIPS program that calculates the following
summation

∑
=

n

i
i
1

Figure 23 shows the MIPS assembly code for the summation program.
The above program was executed using MIPS-SIM and below is the

result.

Enter an integer:
10
The summation is:
55

Several runs of the above code were made with different inputs and the
results were correct.

Design of a Microsoft Version of MIPS Microprocessor Simulator

 122

.text
.globl main
main:
 addi $sp,$sp,-4
 sw $ra,0($sp)
 la $a0,string0
 addi $v0,$zero,4
 syscall
 addi $v0,$zero,5
 syscall
 add $a0,$v0,$zero
 add $s7,$v0,$zero
 sw $ra,0($sp)
 add $a0,$s7,$zero
 jal addit
 lw $ra,0($sp)
 la $a0,space
 addi $v0,$zero,4
 syscall
 la $a0,string1

 addi $v0,$zero,4
 syscall
 add $a0,$zero,$v1
 addi $v0,$zero,1
 syscall
 addi $s8,$s8,-1
 jr $ra
addit:
 add $s0,$a0,$zero
 add $v1,$zero,$zero
loop2:
 add $v1,$s0,$v1
 addi $s0,$s0,-1
 bne $s0,$zero,loop2
 jr $ra

.data
 space:
.word 10
 string0: .asciiz "Enter an integer:\n"
 string1: .asciiz "The summation is: \n"

Figure 23: MIPS assembly code that calculates the summation

Example 5.6: Bubble sort algorithm

In this example we run a MIPS program that implements the bubble sort
algorithm. Figure 24 shows the MIPS assembly code for the MIPS assembly
program of the bubble sort algorithm.

Execution result of the above program is shown below.

2 3 5 7 11 13 17 19 23 29

Which is a correct result.

Example 5.7: Matrix multiplication

In this example we run a MIPS program that multiplies two matrices.
Figure 25 shows the MIPS assembly code that multiplies two matrices. The
dimensions of these two matrices are 2x2.

Mohammad A. Mikki, Mohammed R. El-Khoudary

 123

.data
list2: .word 19, 13, 2, 7, 11, 5, 23, 29, 17,
3
size: .word 10
sp: .asciiz" "
.globl main
.text
main:
 la $a0, list2
 li $a1, 10
 jal bubble_sort
 la $a1, list2
 lw $a0, size
 jal print_integer_list
 exit:
 li $v0, 10
 syscall
bubble_sort:
 addi $t3, $a1, -1
outer:
 bge $zero, $t3, outer_end
 li $t0, 0
 move $t2, $a0
inner:
 bge $t0, $t3, inner_end

 lw $t7, 0($t2)
 lw $t8, 4($t2)
 ble $t7, $t8, no_swap

 sw $t8, 0($t2)
 sw $t7, 4($t2)
no_swap:
 addi $t0, 1
 addi $t2, 4
 j inner
inner_end:

 add $t3, $t3, -1
 j outer

outer_end:
 jr $ra
print_integer_list:
 move $t1, $a1
 li $t2, 0
 move $t3, $a0
print_loop:
 beq $t2, $t3, print_loop_end
 lw $ a0, ($t1)
 li $ v0, 1
 syscall
 la $ a0, sep
 li $ v0, 4
 syscall
 addi $t2, $t2, 1
 addi $t1, $t1, 4
 j print_loop
print_loop_end:

 jr $ra

Figure 24: MIPS assembly code for the bubble sort algorithm.

Execution result of the above program is shown below.

11 40 16 59
Which is a correct result.

Design of a Microsoft Version of MIPS Microprocessor Simulator

 124

.data
Matrix1: .word 1, 5, 2, 7
Matrix2: .word 1, 5, 2, 7
MatrixResult: .word 0,0,0,0
ResultSize:
.word 4
sp: .asciiz" "
.globl main
.text
main:
 la $s0, Matrix1
 la $s1, Matrix2
 la $s2, MatrixResult
 li $t0, 2
 #Row Count

li $t1, 2
 #Column Count
 addi $s5, $zero, 0
 addi $s6, $s0, 0

addi $t2, $zero, 0
addi $t3, $zero, 0
addi $t4, $s2, 16

L1: beq $t2, $t0, L2
 lw $s3, ($s0)
 lw $s4, ($s1)

mul $v0,$s2,$s3
add $s5,$v0,$s5
sw $s5,($s2)
addi $s0, $s0, 4
addi $s1, $s1, 4
addi $t2, $t2, 1

J L1
L2: beq $t3, $t1, L3
 addi $t2, $zero, 0

addi $s5, $zero, 0
addi $s2, $s2, 4
add $s0, $s6, 0
J L1

L3: beq $s2, $t4, FINISH
 la $s1, Matrix2

addi $t3, $zero, 0
addi $t2, $zero, 0
addi $s6, $s6, 4
J L1

la $a1, MatrixResult
lw $a0, ResultSize

JAL print_integer_list
EXIT
Jr $ra
print_integer_list:
 move $t1, $a1
 li $t2, 0
 add $a0, $t3, $zero
print_loop:
 beq $t2, $t3,
print_loop_end
 lw $a0, ($t1)
 li $v0, 1
 syscall
 La $a0, sep
 li $v0, 4
 syscall
 addi $t2, $t2, 1
 addi $t1, $t1, 4
 j print_loop
print_loop_end:
 jr $ra

Figure 25: MIPS assembly code for matrix multiplication of 2x2 matrices

6. CONCLUSION

In this paper we describe the implementation of MIPS-SIM (MIPS
Simulator). MIPS-SIM is a GUI, Java-based simulator for the MIPS
assembly language. The MIPS-SIM simulator has been implemented with
characteristics that are especially useful to undergraduate computer science
and engineering students and their instructors. MIPS-SIM also provides a

Mohammad A. Mikki, Mohammed R. El-Khoudary

 125

simple debugger and minimal set of operating system services. MIPS-SIM
implements almost the entire MIPS32 assembler-extended instruction set.

We validate and verify the correctness of the design of MIPS-SIM by
presenting some experimental results. The experiments range from simple to
complex and cover various aspects of the simulator. We design several
MIPS programs to test its various features and capabilities. These programs
use most of the features and instructions of the MIPS assembly language.
The results show that our design is correct, robust, reliable and accurate.

We plan to expand MIPS-SIM in the future by continuing implementing
the remaining instruction set. Other plans include improving debugging
support through such features as highlighting of memory/register contents
modified in step-by-step execution, and the ability to undo execution steps.
Other features may be implemented or improved as time and resources
permit.

ACKNOWLEDGEMENT

The authors would like to thank the Islamic University of Gaza, Gaza,
Palestine, for partial financial support of this research.

REFERENCES
[1] Patterson D, Hennessy J., Computer Organization and Design: The

Hardware/Software Interface. 3rd edition, Morgan Kaufmann, San
Francisco, CA, 2005.

[2] Vollmar K., Sanderson P., MARS: An Education- Oriented MIPS
Assembly Language Simulator, SIGCSE' 06, ACM, Mar. 1- 5, 2006,
Houston, Texas, USA.

[3] Wolffe, G., Yurcik, W., Osborne, H., Holliday, M., Teaching Computer
Organization/Architecture With Limited Resources Using Simulators,
ACM SIGCSE Bulletin 34, (1), 2002, p 176 – 180.

[4] Yurcik, W. (guest editor), ACM Journal on Educational Resources in
Computing, Vol. 1, No. 4, Dec. 2001.

[5] Yurcik, W. (guest editor), ACM Journal on Educational Resources in
Computing, Vol. 2, No. 1, Mar. 2002.

[6] Larus J., SPIM: A MIPS32 simulator:
http://www.cs.wisc.edu/~larus/spim.html

[7] Karamcheti V., Nachos Project Guide, Spring 2000, Department of
Computer Science, Courant Institute of Mathematical Sciences, New
York University, New York, USA.

[8] Branovic, I., Giorgi, R., Martinelli, E., WebMIPS: A New Web-Based
MIPS Simulation Environment for Computer Architecture Education,

http://www.cs.wisc.edu/~larus/spim.html

Design of a Microsoft Version of MIPS Microprocessor Simulator

 126

Workshop on Computer Architecture Education, 31st International
Symposium on Computer Architecture, Munich, Germany, 2004.

[9] SmallMIPS: A MIPS Simulator:
http://wiki.cs.uiuc.edu/cs497rej/SmallMIPS

[10] Yehezkel C., Yurcik W. , Pearson M., Armstrong D., 2001- Three
simulator tools for teaching computer architecture: Little Man
computer, and RTLSim., ACM Journal of Educational Resources in
Computing, 1(4): p. 60-80

[11] Brorsson, M., MipsIt - A Simulation and Development Environment
Using Animation for Computer Architecture Education, in Proceedings
of the 29th International Symposium on Computer Architecture, 25-29
May, 2002, Anchorage, Alaska, USA.

[12] MIPS SDE 6.x Programmers’ Guide, Revision 1.14, May 30, 2006,
MIPS Technologies, Inc 1225 Charleston Road Mountain View, CA
94043-1353.

[13] MIPSI - MIPS Simulator: http://www.cs.cornell.edu/People/egs/mipsi/
[14] Vollmar, K., Sanderson, P., 2005- A MIPS Assembly Language

Simulator Designed For Education, The Journal of Computing Sciences
in Colleges, Vol. 21, No. 1.

http://wiki.cs.uiuc.edu/cs497rej/SmallMIPS
http://www.cs.cornell.edu/People/egs/mipsi/

