On n-primly Ideals

Arwa E. Ashour¹*

¹Faculty of Science, Islamic University of Gaza, Gaza Strip, State of Palestine

Received on (25-6-2014) Accepted on (23-9-2014)

Abstract

An ideal \(I \) is primal over a commutative ring \(R \) with non zero identity if the set of all elements that are not prime to \(I \), forms an ideal of \(R \). This definition was introduced by Ladislas Fuchs in 1950. In this paper, we define an ideal \(I \) over a commutative ring \(R \) with non zero identity to be n-primly if the set of all elements that are not n-primary to \(I \), forms an ideal of \(R \). But first we introduced the concepts of n-primary elements to an ideal, n-adjoint sets for an ideal, uniformly not n-primary sets for an ideal, n-primly ideals and uniformly n-primly ideals. We study the previous concepts in details illustrated by several examples. We also study the relation between several sets like n-adjoint sets for an ideal, n-adjoint sets for an ideal and the adjoint set for this ideal, sets that are not n-primary for an ideal and uniformly not n-primary sets for this ideal. Also we investigate the relation between some ideals like uniformly n-primly ideals and n-primly ideals, primary ideals and n-primly ideals over a commutative ring with identity

Keywords n-primary elements for an ideal, n-adjoint sets for an ideal, n-primly ideals, Uniformly not n-primary sets for an ideal, Uniformly n-primly ideals.

مثاليات n-بريملي

مثاليات n-

للمثال

في بداية البحث نطرد تعريفات بعض المفاهيم الرئيسية في البحث وهي: مفهوم عناصر n-الابتدائية للمثالي، مفهوم مجموعات n-المستهلكة للمثال، مفهوم المجموعات الموحدة n-الابتدائية للمثال، مفهوم متاليات n-بريملي، مفهوم مثاليات n-بريملي الموحدة الشكل. ثم نقوم بدراسة المفاهيم السابقة بالتفصيل ونتناول عليها بالعديد من الأمثلة.

* Corresponding author e-mail address: arashour@iugaza.edu.ps
1. Introduction

The concept of primal ideals over a commutative ring with non-zero identity was introduced and studied by Ladislas Fuchs in [1]. In [2] Dauns generalized this concept to the concept of primal modules. Then many studies have been done based on these concepts, see [3-6]. These previous studies were a motive for us to introduce the concept of n-primly ideals.

We first introduce the concept of n-primary element for an ideal \(I \) over a commutative ring \(R \) with non zero identity. Thus for a positive integer \(n \), we say that an element \(s \) of a ring \(R \) is \(n \)-primary to \(I \) if the set

\[
 s^{-n}I = \{ a \in R : s^n a \in I \} \subseteq \sqrt{I}.
\]

We call the set of all elements that are not \(n \)-primary to \(I \), the \(n \)-adjoint set for \(I \). Note that the \(n \)-adjoint set for \(I \) is not necessarily an ideal of \(R \). However, if it is an ideal, then we call the ideal \(I \) to be \(n \)-primly ideal.

Let \(n \) be a positive integer. Let \(I \) be an ideal over a commutative ring \(R \) with non zero identity. In Section 2 we introduce the concepts of \(n \)-primary elements to \(I \) illustrated by some examples. Based on this concept, we present sets that are not \(n \)-primary to \(I \) and sets that are uniformly not \(n \)-primary to \(I \). Then we study the relation between these two sets and find the conditions that make these two sets equivalent.

Section 3 deals with \(n \)-adjoint sets for the ideal \(I \). We study the relation between \(n \)-adjoint sets for the ideal \(I \), for different \(n \)'s. We also study the relation between these sets and the adjoint set for the ideal \(I \).

Finally, in Section 4 we introduce the concepts of \(n \)-primly ideals and uniformly \(n \)-primly ideals. We present some properties of \(n \)-primly ideals and study the relation between uniformly \(n \)-primly ideals and \(n \)-primly ideals. We also investigate the relation between primary ideals and \(n \)-primly ideals.

Throughout this paper, all rings are assumed to be commutative with non zero identity.

2. \(n \)-primary elements to an ideal

We start this section by the following definition

Definition 2.1 Let \(n \) be positive integer. Let \(I \) be an ideal over a ring \(R \). Let \(s \) be an element of \(R \). Define \(s^{-n}I = \{ a \in R : s^n a \in I \} \).

Remark 2.2 Let \(I \) be an ideal over a ring \(R \). Let \(s \) be an element of \(R \). Then

\[
 I \subseteq s^{-1}I \subseteq s^{-2}I \subseteq s^{-3}I \subseteq ... ,
\]

and the equality does not holds in general.

Proof The inclusion is clear and can noticed directly from the definition since \(I \) is an ideal. However, the equality does not hold in general because if we take \(R = \mathbb{Z} \), the
set of integers, and \(I = 8Z \), then \(2^{-1}I = 4Z \), \(2^{-2}I = 2Z \) and \(2^{-3}I = Z \).

Remark 2.3 Let \(I \) be an ideal over a ring \(R \). Let \(s \) be an element of \(R \). Let \(n \) be a positive integer. Then \(s^nI \) does not mean that \(s^n \) has an inverse in \(R \), however if \(s^n \) has an inverse in \(R \), then \((s^{-n})I = \{s^{-n}b : b \in I\} \), and the set \(s^{-n}I \) are the same.

Proof Let \(r \in (s^{-n})I \), then \(r = s^{-n}b, \ b \in I \).

Now, \(s^n r = s^n (s^{-n}b) = b \in I \). Thus \(r \in s^{-n}I \).

On the other hand, let \(r \in s^{-n}I \), then \(s^n r \in I \).

Hence \(r = s^{-n}(s^n r) \in (s^{-n})I \).

Definition 2.4 Let \(n \) be a positive integer. Let \(I \) be an ideal over a ring \(R \). Let
\[
s \in R. \text{ If } s^{-n}I \subseteq \sqrt{I},
\]then \(s \) is said to be \(n \)-primary to \(I \).

Example 2.5 Let \(R = Z \). Let \(I = 4Z \), then \(2^{-1}I = 2Z \) and \(2^{-2}I = Z \). Thus \(2 \) is \(1 \)-primary to \(I \), but it is not \(2 \)-primary to \(I \).

Definition 2.6 Let \(n \) be a positive integer. Let \(I \) be an ideal over a ring \(R \). A subset \(A \) of \(R \) is not \(n \)-primary to \(I \) if for every element \(a \) in the set \(A \), \(a \) is not \(n \)-primary to \(I \).

Definition 2.7 Let \(n \) be a positive integer. Let \(I \) be an ideal over a ring \(R \). A subset \(A \) of \(R \) is uniformly not \(n \)-primary to \(I \) if \(\exists b \in R - \sqrt{I} \) with \(A^n b = \{a^n b : a \in A\} \subseteq I \).

Remark 2.8 Let \(n \) be a positive integer. Then every proper ideal is uniformly not \(n \)-primary to itself. Take \(b=1 \), the identity in the previous definition.

Proposition 2.9 Let \(n \) be a positive integer. Let \(I \) be an ideal over a ring \(R \). If \(A \) is uniformly not \(n \)-primary to \(I \), then \(A \) is not \(n \)-primary to \(I \).

Proof Let \(A \) be uniformly not \(n \)-primary to an ideal \(I \). Then there exist an element \(u \) such that \(u \in R - \sqrt{I} \) with \(A^n u \subseteq I \). Let \(a \in A \). Let \(b = u \), then \(a^n b \in I \) and \(b \in R - \sqrt{I} \).

Thus \(a \) is not \(n \)-primary to \(I \). Since \(a \) is an arbitrary element in \(A \), then \(A \) is not \(n \)-primary to \(I \).

Remark 2.10 The converse of Proposition 2.9 is not true in general. Take \(R = Z \), and let \(I = 6Z \), then \(A = \{2,3\} \) is not \(1 \)-primary to \(I \). However \(A \) is not uniformly not \(1 \)-primary to \(I \).

The following Theorem treats the case in which the converse of Proposition 2.9 is true. But first remember that an ideal \(I \) over a ring \(R \) is quasi primary ideal if \(\sqrt{I} \) is prime ideal over \(R \), see [7].

Theorem 2.11 Let \(n \) be a positive integer. Let \(I \) be a quasi primary ideal over a ring \(R \). If \(A \) is finite subset of \(R \), then \(A \) is uniformly not \(n \)-primary to \(I \) if and only if \(A \) is not \(n \)-primary to \(I \).

Proof The necessity is by Proposition 2.9. To prove the sufficiency, suppose that \(A = \{a_1, a_2, \ldots, a_m\} \) is not \(n \)-primary subset to \(I \).

Then \(\exists b_1, b_2, \ldots, b_m \in R - \sqrt{I} \) such that \(a_i^n b_i \in I \),
\[
\forall i \in \{1,2,\ldots,m\}. \text{ Let } b = \prod_{j=1}^{m} b_i.
\]

Since \(I \) is quasi primary ideal over \(R \),
then \(\sqrt{I} \) is prime ideal over \(R \).

Thus \(b \in R - \sqrt{I} \) with \(A^n b \subseteq I \).

Hence \(A \) is uniformly not \(n \)-primary to \(I \).
Since every primary ideal is quasi primary, see[7], then we can conclude the following result.

Corollary 2.12 Let n be a positive integer. Let I be a primary ideal over a ring R If A is finite subset of R, then A is uniformly not n-primary to I if and only if A is not n-primary to I.

Example 2.13 Let X be a set and let R be the ring $(P(X), \Delta, \cap)$ where $P(X)$ is the power set of X and the operation Δ is defined by $A \Delta B = (A - B) \cup (B - A)$. Since for every positive integer n and every $A \in P(X)$, $A^n = A$, then $\sqrt{I} = I$ for every proper ideal I of R. Thus by Remark 2.8, \sqrt{I} is uniformly not n-primary to I, for every proper ideal I of R.

In fact, we can show that the n radical of a proper ideal of a ring is always uniformly not n-primary to this ideal as in the following proposition.

Proposition 2.14 Let n be a positive integer. Let I be a proper ideal over a ring R, then $\sqrt[n]{I} = \{ r \in R : r^n \in I \}$ is uniformly not n-primary to I.

Proof Let $A = \sqrt[n]{I}$. Then $\forall a \in A$, $a^n \in I$.

Let $b = 1$. Since $1 \in R - \sqrt[I]{I}$, then $A^n b \subseteq I$.

Thus A is uniformly not n-primary to I.

3 n-adjoint sets for an ideal.

Definition 3.1 Let n be a positive integer. Let I be an ideal over a ring R. The set of all elements that are not n-primary to I is called the n-adjoint set for I and is denoted by $n-adj(I)$. That is $n-adj(I) = \{ a \in R : a^n b \in I \}$ for some $b \in R - \sqrt[I]{I}$.

Remark 3.2 If I is an ideal over a ring R, then $n-adj(I) \neq R$, for every positive integer n.

Example 3.6 Since \mathbb{Z} is Noetherian ring, then $1-adj(4\mathbb{Z}) = 4\mathbb{Z}$, $n-adj(4\mathbb{Z}) = 2\mathbb{Z}$ for every positive integer $n \geq 2$.
\[\bigcup_{n=1}^{\infty} n - \text{adj}(4Z) = 2 - \text{adj}(4Z). \]
\[\bigcup_{n=1}^{\infty} n - \text{adj}(8Z) = 3 - \text{adj}(8Z). \]
\[\bigcup_{n=1}^{\infty} n - \text{adj}(9Z) = 2 - \text{adj}(9Z). \]

It is known that for an ideal \(I \) of a ring \(R \), the adjoint set of \(I \), which is denoted as \(\text{adj}(I) = \{ a \in R : ab \in I \text{ for some } b \in R - I \} \), see [4]. The following results give the relation between \(n \)-adjoint sets for the ideal \(I \) and the set \(\text{adj}(I) \).

Proposition 3.7 For any ideal \(I \) of a ring \(R \), \(1 - \text{adj}(I) \subseteq \text{adj}(I) \).

Proof Let \(a \in 1 - \text{adj}(I) \), then \(\exists b \in R - \sqrt{I} \) such that \(ab \in I \). Hence \(b \in R - I \).

Therefore \(a \in \text{adj}(I) \).

Remarks 3.8 Since in the ring of integers \(\mathbb{Z} \), \(\text{adj}(4Z) = 4Z \) and \(\text{adj}(4Z) = 2Z \), then the equality in Proposition 3.7 does not hold in general.

Theorem 3.9 If \(I \) is a prime ideal over the ring \(R \), then \(I - \text{adj}(I) = \text{adj}(I) \).

Proof Let \(a \in \text{adj}(I) \), then \(a b \in I \) for some \(b \in R - I \). Since \(I \) is prime, then \(b^m \in R - I \), for any positive integer \(m \).

Hence \(b \in R - \sqrt{I} \) and therefore \(a \in 1 - \text{adj}(I) \).

By Proposition 3.7, the equality holds.

The following results follows immediately from the previous theorem and Remarks 3.4

Corollary 3.10 If \(I \) is a prime ideal over the ring \(R \), then

\[\text{adj}(I) = 1 - \text{adj}(I) \subseteq 2 - \text{adj}(I) \subseteq 3 - \text{adj}(I) \subseteq \ldots, \]

that is \(\text{adj}(I) \subseteq n - \text{adj}(I) \), for every positive integer \(n \).

Proposition 3.11 Let \(n \) be a positive integer. Let \(I \) be a proper ideal of a ring \(R \). Then \(I \subseteq \sqrt[n]{I} \subseteq n - \text{adj}(I) \).

Proof It is clear that \(I \subseteq \sqrt[n]{I} \). Now, let \(r \in \sqrt[n]{I} \), then \(r^n \in I \). Thus \(r^n 1 \in I \). Since \(1 \in R - \sqrt{I} \), then \(r \in n - \text{adj}(I) \).

Proposition 3.12 Let \(n \) be a positive integer. Let \(I \) be a prime ideal of a ring \(R \). Then \(I \subseteq \sqrt[n]{I} \subseteq n - \text{adj}(I) \).

Proof It is clear that \(I \subseteq \sqrt[n]{I} \subseteq I \). Now, let \(a \in \sqrt[n]{I} \), then \(a^m \in I \), for some integer \(m \). Let \(m \) be the smallest such positive integer. Then

i) If \(m = n \), then \(a^m = a^n \in I \) implies \(a \in n - \text{adj}(I) \).

ii) If \(m < n \), then \(a^m \in I \) implies \(a^n 1 = a^{n-m} a^m \in I \).

Thus \(a \in n - \text{adj}(I) \).

iii) If \(m > n \), then \(a^m = a^n a^{m-n} \in I \) with \(a^{m-n} \in R - I \) implies \(a^{m-n} \in R - \sqrt{I} \), because \(I \) is prime ideal of \(R \). Let \(b = a^{m-n} \), then \(b \in R - \sqrt{I} \) with \(a^n b \in I \) implies \(a \in n - \text{adj}(I) \).

4 n-primly ideals.

We noticed in the previous section that the \(n \)-adjoint sets of an ideal \(I \) over a ring \(R \) are not necessarily ideals of \(R \). However, in some cases they will be ideals. In this section, we will study the ideals whose \(n \)-adjoint sets are ideals. These kinds of ideals are called \(n \)-primly ideals as in the following definition.

Definition 4.1 Let \(n \) be a positive integer. An ideal \(I \) over a ring \(R \) is called \(n \)-primly if \(n - \text{adj}(I) \) is an ideal of \(R \).

Example 4.2 Let \(R = \mathbb{Z} \). Then \(4Z \), \(8Z \) and \(9Z \) are \(n \)-primly ideals of \(\mathbb{Z} \), while \(6Z \) and \(12Z \) are
Proposition 4.3 Let n be a positive integer. Let I be an ideal of a ring R. If n-$adj(I)$ is closed under addition, then I is an n-primly ideal of R.

Proof We have to show that n-$adj(I)$ is an ideal of R. Since n-$adj(I)$ is closed under addition, it is enough to show that for every $r \in R$ and every $a \in n$-$adj(I)$, $ra \in n$-$adj(I)$. Let $r \in R$ and $a \in n$-$adj(I)$, then $\exists b \in R - \sqrt{I}$ such that $a^n b = I$. Thus $r^n a^n b = (r a)^n b \in I$. Therefore $ra \in n$-$adj(I)$.

Proposition 4.4 If I is a prime ideal over a ring R, then I is n-primly ideal of R for every positive integer n.

Proof Let n be a positive integer. According to Proposition 4.3, it is enough to show that n-$adj(I)$ is closed under addition. Since I is prime, then I is primal, see [6]. Thus $adj(I)$ is an ideal of R. Let $a_1, a_2 \in n$-$adj(I)$, then $\exists b_1, b_2 \in R - \sqrt{I}$ such that $a_1^n b_1$ and $a_2^n b_2$ are in I. Since $a_1^n b_1 \in I$, then $a_1 (a_1^{n-1} b_1) \in I$. If $a_1^{n-1} b_1 \notin I$, then $a_1 \notin adj(I)$. Otherwise, $a_1^{n-1} b_1 \in I$ implies $a_1^{n-1} \in I$ (because I is prime and $b_1 \notin I$). Since I is prime, then $a_1 \in I$. Thus $b = 1 \notin I$ with $a_1 b \in I$ implies $a_1 \in adj(I)$. Hence in each cases $a_1 \in adj(I)$. Similarly, $a_2 \in adj(I)$. Since $adj(I)$ is ideal, then $a_1 + a_2 \in adj(I) \subseteq n$-$adj(I)$, see Corollary 3.10. Thus I is n-primly ideal of R for every positive integer n.

Proposition 4.5 Let n be a positive integer. If I is an n-primly ideal of a ring R, then n-$adj(I)$ is a primary ideal of R.

Proposition 4.6 Let n be a positive integer. Let I be an ideal of a ring R. If n-$adj(I)$ is uniformly not 1-primary to I, then I is an n-primly ideal of R.

Proof According to Proposition 4.3, it is enough to show that n-$adj(I)$ is closed under addition. Let $A = n$-$adj(I)$. Let $a, b \in A$. Since A is uniformly not 1-primary to I, then $au \in I$ and $bu \in I$. Hence $a^m u \in I$ and $b^m u \in I$ for every positive integer m. Thus $(a + b)^n u = \sum_{k=0}^{n} a^{n-k} b^k u \in I$ with $u \in R - \sqrt{I}$. This implies that $a + b \in n$-$adj(I)$.

Definition 4.7 Let n be a positive integer. Let I be an ideal over a ring R. If n-$adj(I)$ is uniformly not n-primary to I, then I is said to be uniformly n-primly ideal of R.

Theorem 4.8 Let n be a positive integer. Let I be a proper ideal of a ring R. If n-$adj(I)$ is a principal ideal of R, then I is a uniformly n-primly ideal of R.

Proof Let $A = n$-$adj(I) = R a$, for some $a \in A$. Then $a^n u \in I$ for some element.
Let $u \in R - \sqrt{I}$. Let $x \in A$, then $x = ra$, for some $r \in R$.
Since $a^n u \in I$, then $x^n u = r^n a^n u \in I$.

Since x is an arbitrary element in A, then $A^n u \subseteq I$.
Hence A is uniformly not n-primary to I. Therefore I is a uniformly n-primly ideal of R.

The following result follows immediately from the previous theorem.

Corollary 4.9 Let n be a positive integer. Let R be a principal ideal ring. Then every n-primly ideal is uniformly n-primly.

Example 4.10 Let $R = \mathbb{Z}$. Then $2\mathbb{Z}, 4\mathbb{Z}, 8\mathbb{Z}$ and $9\mathbb{Z}$ are uniformly n-primly ideals of \mathbb{Z}.

Proposition 4.11 Let I be a proper ideal of a ring R. If n-adj$(I) = I$, for some positive integer n, then I is primary ideal of R.

Proof Let $ab \in I$ such that $b \notin \sqrt{I}$, then $a \in 1 - \text{adj}(I) \subseteq n - \text{adj}(I) = I$, see Remark 3.4. Thus I is primary.

Theorem 4.12 Let I be a proper ideal of a ring R. If I is primary ideal of R, then n-adj$(I) = \sqrt[n]{I} = \sqrt{I}$ for every positive integer n.

Proof Let I be a primary ideal of R.
By Proposition 3.12 it is enough to show that $n - \text{adj}(I) \subseteq \sqrt[n]{I}$. Let $a \in n - \text{adj}(I)$, then $a^n b \in I$ for some $b \in R - \sqrt[n]{I}$.
Since I is primary, then $a^n \in I$. Thus $a \in \sqrt{n}I$.

Corollary 4.13 If I is a primary ideal of a ring R, then I is n-primly ideal of R, for every positive integer n.

Proof Since \sqrt{I} is an ideal of R and, then by the previous theorem $n - \text{adj}(I) = \sqrt[n]{I}$, for every positive integer n, then the result follows immediately.

Corollary 4.14 If I is a primary ideal of a ring R, then n-adj(I) is a prime ideal of R, for every positive integer n.

Proof Since I is primary ideal of R, then by Theorem 4.12, $n - \text{adj}(I) = \sqrt[n]{I}$, for every positive integer n. Now, the result follows immediately because $\sqrt[n]{I}$ is prime ideal of R, see [8].

Remark 4.15 Note that by Corollary 4.14, if I is a primary ideal of a ring R, then 1-adj(I) is a prime ideal of R. The following example shows that the converse of the previous statement is not true in general. Take $R = F[X, Y]$, which is the ring of polynomials in X and Y over the field F.
Let $I = (X^2, XY)$. As Ladislas Fuchs illustrated in [6], this ideal is not primary. On the other hand,

$$\sqrt{(X^2, XY)} = \sqrt{X(X, Y)} = \sqrt{X} \cap \sqrt{X, Y} = (X) \cap (X, Y) = (X),$$
and 1-adj$(I) = (X)$. Thus I is 1-primly ideal, which is not primary.

Theorem 4.16 Let R be a Boolean ring with unity and let I be an ideal of R. Then every 1-primly ideal of R is primary ideal.

Proof According to Proposition 4.11 and Remark 3.4 it is enough to show that $1 - \text{adj}(I) \subseteq I$. Let $a \in 1 - \text{adj}(I)$. Since I is 1-primly ideal of R, then $1 - \text{adj}(I)$ is an ideal of R. Note that $1 - a \notin 1 - \text{adj}(I)$, for otherwise, $1 = (1 - a) + a \in 1 - \text{adj}(I)$, which contradicts Remark 3.2. That is $1 - a$ is 1-primary to I.
Therefore, $\forall r \in R$, since $(1 - a)ar = 0 \in I$, then $ar \in \sqrt{I}$.
Thus there exists a positive integer m such that $(ar)m \in I$.
Since $1 \in R$, then $a^m \in I$. Since R is a Boolean ring, then $a = a^m \in I$.
Finally, the following result follows immediately from Theorem 4.16 and Corollary 4.13.

Corollary 4.17 Let R be a Boolean ring with unity. An ideal I of R is primary if and only if it is 1-primly ideal of R.

13
References